Deep neural network and meta-learning-based reactive sputtering with small data sample counts

人工智能 机器学习 回归 人工神经网络 计算机科学 高斯过程 克里金 回归分析 样本量测定 数据挖掘 统计 高斯分布 数学 物理 量子力学
作者
Jeongsu Lee,Chanwoo Yang
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:62: 703-717 被引量:9
标识
DOI:10.1016/j.jmsy.2022.02.004
摘要

Although several studies have focused on the application of deep-learning techniques in manufacturing processes, the lack of relevant datasets remains a major challenge. Hence, this paper presents a meta-learning approach to resolve the few-shot regression problem encountered in manufacturing applications. The proposed approach is based on data augmentation using conventional regression models and optimization-based meta-learning. The resulting deep neural network can be employed to optimize the reactive-sputtering process used in the fabrication of thin, compounded films of titanium and nitride. The performance of the proposed meta-learning approach is compared to the conventional regression models, including support vector regression, Bayesian ridge regression, and Gaussian process regression, which exhibit state-of-the-art performance for regression over small data sample counts. The proposed meta-learning approach outperformed the baseline regression models when tested by varying the training sample counts from 5 to 40, resulting in a decrease in the root mean square error to 74.6% of that observed in the conventional models to predict the stoichiometric ratio of the film produced during the reactive sputtering process. This is remarkable because regression performed over a small number of data is usually considered unsuitable for deep-learning approaches. Therefore, this approach exhibits considerable potential for usage in different manufacturing applications because of its capability to handle a range of dataset sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助流沙采纳,获得10
刚刚
南京喵科大学完成签到 ,获得积分10
刚刚
KevenDing完成签到,获得积分10
刚刚
Aquilus发布了新的文献求助50
刚刚
zhang完成签到 ,获得积分10
2秒前
Luka完成签到,获得积分10
2秒前
酷波er应助大兵采纳,获得10
3秒前
南京喵科大学关注了科研通微信公众号
4秒前
果冻橙完成签到,获得积分10
5秒前
7秒前
学术laji完成签到 ,获得积分10
7秒前
上官若男应助董sir采纳,获得10
8秒前
彭于晏应助霍冰旋采纳,获得10
10秒前
zxr完成签到,获得积分10
10秒前
13秒前
13秒前
fangyifang发布了新的文献求助10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
Holland应助科研通管家采纳,获得30
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323395
关于积分的说明 10214380
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304