亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning Matter: Materials Design with Machine Learning and Atomistic Simulations

计算机科学 代表(政治) 灵活性(工程) 数学 政治学 政治 统计 法学
作者
Simon Axelrod,Daniel Schwalbe‐Koda,Somesh Mohapatra,James Damewood,Kevin P. Greenman,Rafael Gómez‐Bombarelli
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:3 (3): 343-357 被引量:44
标识
DOI:10.1021/accountsmr.1c00238
摘要

ConspectusDesigning new materials is vital for addressing pressing societal challenges in health, energy, and sustainability. The combination of physicochemical laws and empirical trial and error has long guided material design, but this approach is limited by the cost of experiments and the difficulty of deriving complex guiding principles. The space of hypothetical materials to be considered is incredibly large, and only a small fraction of possible compounds can ever be tested experimentally. The computational techniques of atomistic simulation and machine learning (ML) offer an avenue to rapidly invent new materials and navigate this enormous space. Together, they can be used to infer complex design principles and identify high-quality candidates more rapidly than trial-and-error experimentation. In this Account, we review our group's recent contributions to simulation and ML for materials design. We begin by discussing the numerical representation of materials for use in ML. Representations can be produced through deterministic algorithms, learnable encodings, or physics-based methods and lead to vector, graph, and matrix outputs. We describe how these different approaches offer distinct material- and application-specific advantages. We provide demonstrations from our own work on small-molecule drugs, macromolecules, dyes, electrolytes, and zeolites. In several cases, we show how the appropriate representation led to guiding principles that facilitated experimental materials design. Next, we highlight the development of ML methods for enhancing atomistic simulation. These advances help to improve simulation accuracy and expand the time and length scales that can be explored. They include differentiable atomistic simulations in which ensemble-averaged quantities are differentiated with respect to system parameters, and novel autoregressive methods for enhanced sampling of challenging physical distributions. Other developments include learnable coarse-grained models, which can accelerate molecular dynamics while minimizing the loss of all-atom information, and ML interatomic potentials, which can be trained on maximally informative quantum chemistry data through active learning and adversarial uncertainty attacks. Next, we show how these combined computational advances have enabled high-throughput virtual screening. This has led to the discovery of low-cost organic structure-directing agents for zeolite synthesis, polymer electrolytes, and efficient photoswitches for targeted medicine. We conclude by discussing the limitations of ML and simulation. These include the large data requirements and limited chemical transferability of the former and the speed–accuracy trade-offs of the latter. We predict that advancements in quantum chemistry will further accelerate simulations, while the incorporation of physical principles will improve the reliability of ML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingcoffee完成签到 ,获得积分10
2秒前
科研通AI5应助liam采纳,获得10
18秒前
19秒前
21秒前
ektyz发布了新的文献求助10
24秒前
30秒前
1分钟前
zz完成签到,获得积分10
1分钟前
zz发布了新的文献求助10
1分钟前
jimmy_bytheway完成签到,获得积分0
1分钟前
HJJHJH发布了新的文献求助10
2分钟前
科研通AI2S应助HJJHJH采纳,获得10
2分钟前
2分钟前
2分钟前
研友_VZG7GZ应助西门晴采纳,获得10
2分钟前
2分钟前
liam发布了新的文献求助10
2分钟前
完美世界应助无私元芹采纳,获得10
2分钟前
3分钟前
3分钟前
liam发布了新的文献求助10
3分钟前
Steven发布了新的文献求助30
3分钟前
3分钟前
无私元芹发布了新的文献求助10
3分钟前
3分钟前
慕青应助无私元芹采纳,获得10
3分钟前
科研通AI5应助liam采纳,获得30
4分钟前
老天师一巴掌完成签到 ,获得积分10
4分钟前
科研通AI5应助skittles采纳,获得10
4分钟前
Ingrid_26发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
贪玩的访风完成签到 ,获得积分10
4分钟前
skittles发布了新的文献求助10
4分钟前
4分钟前
西门晴发布了新的文献求助10
4分钟前
科研通AI2S应助江小霜采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837484
求助须知:如何正确求助?哪些是违规求助? 3379588
关于积分的说明 10509919
捐赠科研通 3099208
什么是DOI,文献DOI怎么找? 1707000
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772573