亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning for change detection in remote sensing: a review

变更检测 遥感 深度学习 计算机科学 人工智能 环境科学 数据科学 地质学
作者
Ting Bai,Le Wang,Dameng Yin,Kaimin Sun,Yepei Chen,Wenzhuo Li,Deren Li
出处
期刊:Geo-spatial Information Science [Taylor & Francis]
卷期号:26 (3): 262-288 被引量:130
标识
DOI:10.1080/10095020.2022.2085633
摘要

A large number of publications have incorporated deep learning in the process of remote sensing change detection. In these Deep Learning Change Detection (DLCD) publications, deep learning methods have demonstrated their superiority over conventional change detection methods. However, the theoretical underpinnings of why deep learning improves the performance of change detection remain unresolved. As of today, few in-depth reviews have investigated the mechanisms of DLCD. Without such a review, five critical questions remain unclear. Does DLCD provide improved information representation for change detection? If so, how? How to select an appropriate DLCD method and why? How much does each type of change benefits from DLCD in terms of its performance? What are the major limitations of existing DLCD methods and what are the prospects for DLCD? To address these five questions, we reviewed according to the following strategies. We grouped the DLCD information assemblages into the four unique dimensions of remote sensing: spectral, spatial, temporal, and multi-sensor. For the extraction of information in each dimension, the difference between DLCD and conventional change detection methods was compared. We proposed a taxonomy of existing DLCD methods by dividing them into two distinctive pools: separate and coupled models. Their advantages, limitations, applicability, and performance were thoroughly investigated and explicitly presented. We examined the variations in performance between DLCD and conventional change detection. We depicted two limitations of DLCD, i.e. training sample and hardware and software dilemmas. Based on these analyses, we identified directions for future developments. As a result of our review, we found that DLCD's advantages over conventional change detection can be attributed to three factors: improved information representation; improved change detection methods; and performance enhancements. DLCD has to surpass the limitations with regard to training samples and computing infrastructure. We envision this review can boost developments of deep learning in change detection applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
咕咕发布了新的文献求助10
22秒前
ph完成签到 ,获得积分0
52秒前
桐桐应助LHS采纳,获得10
1分钟前
1分钟前
LHS发布了新的文献求助10
1分钟前
Tiger完成签到,获得积分10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
咪路发布了新的文献求助10
2分钟前
咪路完成签到,获得积分10
2分钟前
scm完成签到,获得积分10
2分钟前
4分钟前
和光同尘完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
5分钟前
5分钟前
puzhongjiMiQ发布了新的文献求助10
5分钟前
puzhongjiMiQ发布了新的文献求助10
5分钟前
乐正怡完成签到 ,获得积分10
5分钟前
puzhongjiMiQ发布了新的文献求助10
6分钟前
poki完成签到 ,获得积分10
6分钟前
lixuebin完成签到 ,获得积分10
6分钟前
情怀应助Whale采纳,获得10
7分钟前
光合作用完成签到,获得积分10
8分钟前
积极的中蓝完成签到 ,获得积分10
8分钟前
吕耀炜完成签到,获得积分10
9分钟前
sunday2024完成签到,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
9分钟前
MchemG完成签到,获得积分0
10分钟前
桐桐应助小言采纳,获得10
10分钟前
10分钟前
Whale发布了新的文献求助10
10分钟前
我爱科研发布了新的文献求助20
11分钟前
丘比特应助我爱科研采纳,获得10
11分钟前
TXZ06完成签到,获得积分10
11分钟前
12分钟前
昏睡的蟠桃应助蛋白聚糖采纳,获得200
13分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815818
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402272
捐赠科研通 3077196
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767728