自编码
主成分分析
模式识别(心理学)
人工智能
计算机科学
代表(政治)
红外光谱学
深度学习
红外线的
生成模型
特征学习
谱线
生物系统
编码器
样品(材料)
机器学习
生成语法
化学
物理
光学
有机化学
天文
政治
政治学
法学
生物
操作系统
色谱法
作者
Michael Grossutti,Joseph D’Amico,Jonathan Quintal,Hugh MacFarlane,Amanda Quirk,John Dutcher
标识
DOI:10.1021/acs.jpclett.2c01328
摘要
Infrared (IR) spectra contain detailed and extensive information about the chemical composition and bonding environment in a sample. However, this information is difficult to extract from complex heterogeneous systems because of overlapping absorptions due to different generative factors. We implement a deep learning approach to study the complex spectroscopic changes that occur in cross-linked polyethylene (PEX-a) pipe by training a β-variational autoencoder (β-VAE) on a database of PEX-a pipe spectra. We show that the β-VAE outperforms principal component analysis (PCA) and learns interpretable and independent representations of the generative factors of variance in the spectra. We apply the β-VAE encoder to a hyperspectrum of a crack in the wall of a pipe to evaluate the spatial distribution of these learned representations. This study shows how deep learning architectures like β-VAE can enhance the analysis of spectroscopic data of complex heterogeneous systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI