已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep diagnosis: A real-time apple leaf disease detection system based on deep learning

人工智能 计算机科学 RGB颜色模型 深度学习 同种类的 鉴定(生物学) 阶段(地层学) 模式识别(心理学) 机器学习 数学 生物 植物 组合数学 古生物学
作者
Asif Iqbal Khan,S. M. K. Quadri,Saba Banday,Junaid Latief Shah
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 107093-107093 被引量:112
标识
DOI:10.1016/j.compag.2022.107093
摘要

Diseases and pests are one of the major reasons for low productivity of apples which in turn results in huge economic loss to the apple industry every year. Early detection of apple diseases can help in controlling the spread of infections and ensure better productivity. However, early diagnosis and identification of diseases is challenging due to many factors like, presence of multiple symptoms on same leaf, non-homogeneous background, differences in leaf colour due to age of infected cells, varying disease spot sizes etc. In this study, we first constructed an expert-annotated apple disease dataset of suitable size consisting around 9000 high quality RGB images covering all the main foliar diseases and symptoms. Next, we propose a deep learning based apple disease detection system which can efficiently and accurately identify the symptoms. The proposed system works in two stages, first stage is a tailor-made light weight classification model which classifies the input images into diseased, healthy or damaged categories and the second stage (detection stage) processing starts only if any disease is detected in first stage. Detection stage performs the actual detection and localization of each symptom from diseased leaf images. The proposed approach obtained encouraging results, reaching around 88% of classification accuracy and our best detection model achieved mAP of 42%. The preliminary results of this study look promising even on small or tiny spots. The qualitative results validate that the proposed system is effective in detecting various types of apple diseases and can be used as a practical tool by farmers and apple growers to aid them in diagnosis, quantification and follow-up of infections. Furthermore, in future, the work can be extended to other fruits and vegetables as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ke发布了新的文献求助10
2秒前
...完成签到,获得积分10
3秒前
cici完成签到,获得积分10
3秒前
4秒前
淼淼完成签到,获得积分10
4秒前
FashionBoy应助暴躁的香氛采纳,获得10
6秒前
7秒前
NexusExplorer应助谢朝邦采纳,获得10
8秒前
cxwcn发布了新的文献求助10
8秒前
万灵竹发布了新的文献求助10
12秒前
爆米花应助ke采纳,获得10
15秒前
rose完成签到,获得积分10
16秒前
明亮白筠完成签到,获得积分10
17秒前
传奇3应助万灵竹采纳,获得10
18秒前
朴素羊完成签到 ,获得积分10
18秒前
NexusExplorer应助liu采纳,获得10
20秒前
33秒前
38秒前
xiao_niu完成签到,获得积分10
39秒前
谢朝邦发布了新的文献求助10
40秒前
40秒前
cici发布了新的文献求助10
43秒前
bigxianyu完成签到,获得积分10
44秒前
45秒前
du完成签到 ,获得积分20
45秒前
taster发布了新的文献求助10
46秒前
zm完成签到,获得积分10
48秒前
49秒前
50秒前
科研通AI5应助fr采纳,获得10
50秒前
星辰大海应助taster采纳,获得10
50秒前
51秒前
吃肯德基发布了新的文献求助10
52秒前
粗犷的泥猴桃完成签到,获得积分10
52秒前
53秒前
小小淮发布了新的文献求助10
55秒前
moon发布了新的文献求助10
55秒前
zhuangxiaocheng完成签到,获得积分20
55秒前
褚驳完成签到,获得积分10
55秒前
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777501
求助须知:如何正确求助?哪些是违规求助? 3322845
关于积分的说明 10212016
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667229
邀请新用户注册赠送积分活动 798030
科研通“疑难数据库(出版商)”最低求助积分说明 758193