亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Edge-Computing and Machine-Learning-Based Framework for Software Sensor Development

云计算 计算机科学 软件 质量保证 GSM演进的增强数据速率 质量(理念) 软件工程 系统工程 工业工程 人工智能 工程类 操作系统 运营管理 认识论 哲学 外部质量评估
作者
Pál Péter Hanzelik,Alex Kummer,János Abonyi
出处
期刊:Sensors [MDPI AG]
卷期号:22 (11): 4268-4268 被引量:17
标识
DOI:10.3390/s22114268
摘要

The present research presents a framework that supports the development and operation of machine-learning (ML) algorithms to develop, maintain and manage the whole lifecycle of modeling software sensors related to complex chemical processes. Our motivation is to take advantage of ML and edge computing and offer innovative solutions to the chemical industry for difficult-to-measure laboratory variables. The purpose of software sensor models is to continuously forecast the quality of products to achieve effective quality control, maintain the stable production condition of plants, and support efficient, environmentally friendly, and harmless laboratory work. As a result of the literature review, quite a few ML models have been developed in recent years that support the quality assurance of different types of materials. However, the problems of continuous operation, maintenance and version control of these models have not yet been solved. The method uses ML algorithms and takes advantage of cloud services in an enterprise environment. Industrial 4.0 devices such as the Internet of Things (IoT), edge computing, cloud computing, ML, and artificial intelligence (AI) are core techniques. The article outlines an information system structure and the related methodology based on data from a quality-assurance laboratory. During the development, we encountered several challenges resulting from the continuous development of ML models and the tuning of their parameters. The article discusses the development, version control, validation, lifecycle, and maintenance of ML models and a case study. The developed framework can continuously monitor the performance of the models and increase the amount of data that make up the models. As a result, the most accurate, data-driven and up-to-date models are always available to quality-assurance engineers with this solution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
souther完成签到,获得积分0
10秒前
gexzygg应助科研通管家采纳,获得20
11秒前
gexzygg应助科研通管家采纳,获得10
11秒前
gexzygg应助科研通管家采纳,获得10
11秒前
龚文亮完成签到,获得积分10
12秒前
ding应助火星人采纳,获得10
17秒前
26秒前
31秒前
CipherSage应助坂田银时采纳,获得10
40秒前
兆兆完成签到 ,获得积分10
41秒前
45秒前
Li发布了新的文献求助10
1分钟前
要减肥天问完成签到,获得积分10
1分钟前
1分钟前
1分钟前
坂田银时发布了新的文献求助10
1分钟前
所所应助Bosen采纳,获得10
1分钟前
朴实的鞋子完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
杰帅发布了新的文献求助10
1分钟前
Bosen发布了新的文献求助10
1分钟前
搜集达人应助杰帅采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
Benhnhk21完成签到,获得积分10
2分钟前
2分钟前
2分钟前
tyr001发布了新的文献求助10
2分钟前
大个应助tyr001采纳,获得10
3分钟前
StonesKing完成签到,获得积分20
3分钟前
3分钟前
StonesKing发布了新的文献求助10
3分钟前
朴实的鞋子关注了科研通微信公众号
3分钟前
搜集达人应助Bosen采纳,获得10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549332
求助须知:如何正确求助?哪些是违规求助? 4634617
关于积分的说明 14634910
捐赠科研通 4576098
什么是DOI,文献DOI怎么找? 2509504
邀请新用户注册赠送积分活动 1485354
关于科研通互助平台的介绍 1456572