Complex-valued Neural Network-based Quantum Language Models

计算机科学 语言模型 人工智能 理论计算机科学 人工神经网络 自然语言 算法
作者
Peng Zhang,Wenjie Hui,Benyou Wang,Donghao Zhao,Dawei Song,Christina Lioma,Jakob Grue Simonsen
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:40 (4): 1-31 被引量:4
标识
DOI:10.1145/3505138
摘要

Language modeling is essential in Natural Language Processing and Information Retrieval related tasks. After the statistical language models, Quantum Language Model (QLM) has been proposed to unify both single words and compound terms in the same probability space without extending term space exponentially. Although QLM achieved good performance in ad hoc retrieval, it still has two major limitations: (1) QLM cannot make use of supervised information, mainly due to the iterative and non-differentiable estimation of the density matrix, which represents both queries and documents in QLM. (2) QLM assumes the exchangeability of words or word dependencies, neglecting the order or position information of words. This article aims to generalize QLM and make it applicable to more complicated matching tasks (e.g., Question Answering) beyond ad hoc retrieval. We propose a complex-valued neural network-based QLM solution called C-NNQLM to employ an end-to-end approach to build and train density matrices in a light-weight and differentiable manner, and it can therefore make use of external well-trained word vectors and supervised labels. Furthermore, C-NNQLM adopts complex-valued word vectors whose phase vectors can directly encode the order (or position) information of words. Note that complex numbers are also essential in the quantum theory. We show that the real-valued NNQLM (R-NNQLM) is a special case of C-NNQLM. The experimental results on the QA task show that both R-NNQLM and C-NNQLM achieve much better performance than the vanilla QLM, and C-NNQLM’s performance is on par with state-of-the-art neural network models. We also evaluate the proposed C-NNQLM on text classification and document retrieval tasks. The results on most datasets show that the C-NNQLM can outperform R-NNQLM, which demonstrates the usefulness of the complex representation for words and sentences in C-NNQLM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑的宝马完成签到 ,获得积分10
刚刚
zuol发布了新的文献求助10
刚刚
1秒前
1秒前
第柒序列发布了新的文献求助10
1秒前
ergatoid完成签到,获得积分10
1秒前
香蕉觅云应助爱啃大虾采纳,获得10
1秒前
2秒前
乐观忆灵发布了新的文献求助10
2秒前
wenyue发布了新的文献求助10
2秒前
冰魂应助快乐小子采纳,获得10
2秒前
PPPPP星星完成签到,获得积分10
2秒前
Joshua发布了新的文献求助10
2秒前
ppprotein发布了新的文献求助10
3秒前
3秒前
拾新发布了新的文献求助10
3秒前
chem is try完成签到,获得积分10
4秒前
4秒前
iwsaml发布了新的文献求助10
4秒前
顺利的尔槐完成签到,获得积分0
4秒前
倩Q发布了新的文献求助10
4秒前
酸奶烤着吃完成签到,获得积分10
5秒前
一路向北4956完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
he大海贼完成签到 ,获得积分10
6秒前
赵淑敏完成签到,获得积分10
6秒前
6秒前
雪白起眸完成签到,获得积分20
6秒前
zc发布了新的文献求助10
7秒前
7秒前
wsq完成签到,获得积分10
7秒前
7秒前
感动的自行车完成签到 ,获得积分10
7秒前
Kyrie完成签到,获得积分10
7秒前
城南完成签到,获得积分10
8秒前
有梦想的人不睡觉完成签到,获得积分10
8秒前
嘻嘻完成签到,获得积分10
8秒前
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792815
求助须知:如何正确求助?哪些是违规求助? 3337271
关于积分的说明 10284330
捐赠科研通 3054023
什么是DOI,文献DOI怎么找? 1675755
邀请新用户注册赠送积分活动 803778
科研通“疑难数据库(出版商)”最低求助积分说明 761534