Extracting Weld Bead Shapes from Radiographic Testing Images with U-Net

焊接 图像处理 有孔小珠 材料科学 人工智能 计算机科学 冶金 复合材料 图像(数学)
作者
Gang-soo Jin,Sangjin Oh,Yeon-seung Lee,Sung-chul Shin
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:11 (24): 12051-12051 被引量:13
标识
DOI:10.3390/app112412051
摘要

Metals created by melting basic metal and welding rods in welding operations are referred to as weld beads. The weld bead shape allows the observation of pores and defects such as cracks in the weld zone. Radiographic testing images are used to determine the quality of the weld zone. The extraction of only the weld bead to determine the generative pattern of the bead can help efficiently locate defects in the weld zone. However, manual extraction of the weld bead from weld images is not time and cost-effective. Efficient and rapid welding quality inspection can be conducted by automating weld bead extraction through deep learning. As a result, objectivity can be secured in the quality inspection and determination of the weld zone in the shipbuilding and offshore plant industry. This study presents a method for detecting the weld bead shape and location from the weld zone image using image preprocessing and deep learning models, and extracting the weld bead through image post-processing. In addition, to diversify the data and improve the deep learning performance, data augmentation was performed to artificially expand the image data. Contrast limited adaptive histogram equalization (CLAHE) is used as an image preprocessing method, and the bead is extracted using U-Net, a pixel-based deep learning model. Consequently, the mean intersection over union (mIoU) values are found to be 90.58% and 85.44% in the train and test experiments, respectively. Successful extraction of the bead from the radiographic testing image through post-processing is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
量子星尘发布了新的文献求助150
1秒前
孤独千愁完成签到,获得积分10
1秒前
1秒前
Cu完成签到,获得积分10
2秒前
2秒前
酷波er应助DONG采纳,获得10
3秒前
哆啦A梦完成签到 ,获得积分10
3秒前
3秒前
华仔应助机灵听蓉采纳,获得10
5秒前
6秒前
小合发布了新的文献求助10
6秒前
尘扬完成签到,获得积分10
7秒前
8秒前
9秒前
bkagyin应助自信书兰采纳,获得10
9秒前
哭泣青烟完成签到 ,获得积分10
9秒前
星辰大海应助失眠的馒头采纳,获得10
10秒前
万能图书馆应助无名采纳,获得10
11秒前
一昂发布了新的文献求助10
12秒前
小合完成签到,获得积分20
12秒前
12秒前
外向蜡烛完成签到,获得积分10
13秒前
轻风完成签到,获得积分0
13秒前
lyric完成签到,获得积分10
14秒前
15秒前
果粒发布了新的文献求助20
16秒前
17秒前
Mint0104完成签到,获得积分10
19秒前
翼静发布了新的文献求助10
19秒前
曹翔豪发布了新的文献求助10
20秒前
现代的擎苍应助航biubiu采纳,获得10
21秒前
22秒前
lightman完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
叮叮叮铛完成签到,获得积分10
24秒前
共享精神应助王皮皮采纳,获得30
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4980014
求助须知:如何正确求助?哪些是违规求助? 4232567
关于积分的说明 13183918
捐赠科研通 4023772
什么是DOI,文献DOI怎么找? 2201465
邀请新用户注册赠送积分活动 1213907
关于科研通互助平台的介绍 1130199