Review the state-of-the-art technologies of semantic segmentation based on deep learning

计算机科学 分割 人工智能 基于分割的对象分类 尺度空间分割 语义计算 深度学习 机器学习 图像分割 计算机视觉 模式识别(心理学) 语义网
作者
Yujian Mo,Yan Wu,Xinneng Yang,Feilin Liu,Yujun Liao
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:493: 626-646 被引量:403
标识
DOI:10.1016/j.neucom.2022.01.005
摘要

The goal of semantic segmentation is to segment the input image according to semantic information and predict the semantic category of each pixel from a given label set. With the gradual intellectualization of modern life, more and more applications need to infer relevant semantic information from images for subsequent processing, such as augmented reality, autonomous driving, video surveillance, etc. This paper reviews the state-of-the-art technologies of semantic segmentation based on deep learning. Because semantic segmentation requires a large number of pixel-level annotations, in order to reduce the fine-grained requirements of annotation and reduce the economic and time cost of manual annotation, this paper studies the works on weakly-supervised semantic segmentation. In order to enhance the generalization ability and robustness of the segmentation model, this paper investigates the works on domain adaptation in semantic segmentation. Many types of sensors are usually equipped in some practical applications, such as autonomous driving and medical image analysis. In order to mine the association between multi-modal data and improve the accuracy of the segmentation model, this paper investigates the works based on multi-modal data fusion semantic segmentation. The real-time performance of the model needs to be considered in practical application. This paper analyzes the key factors affecting the real-time performance of the segmentation model and investigates the works on real-time semantic segmentation. Finally, this paper summarizes the challenges and promising research directions of semantic segmentation tasks based on deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助无敌幸运儿采纳,获得10
1秒前
鱼咬羊发布了新的文献求助10
1秒前
2秒前
育三杯清栀完成签到 ,获得积分10
2秒前
温柔可乐完成签到,获得积分10
4秒前
捏个小雪团完成签到 ,获得积分10
4秒前
Xiaofei完成签到,获得积分10
4秒前
4秒前
大约在冬季完成签到,获得积分10
5秒前
刘子豪发布了新的文献求助10
5秒前
123给123的求助进行了留言
6秒前
6秒前
风趣过客发布了新的文献求助10
8秒前
梦会故乡完成签到,获得积分10
8秒前
不需要昵称完成签到,获得积分10
8秒前
8秒前
8秒前
chwy发布了新的文献求助10
9秒前
含蓄的荔枝应助yy采纳,获得10
9秒前
9秒前
coolkid完成签到 ,获得积分10
9秒前
情怀应助人不犯二枉少年采纳,获得10
9秒前
11秒前
苗条的沛凝完成签到,获得积分20
12秒前
半夏微凉发布了新的文献求助10
12秒前
zhui发布了新的文献求助10
12秒前
13秒前
ct发布了新的文献求助10
13秒前
14秒前
iNk应助舒心宛采纳,获得20
14秒前
14秒前
高兴的易形完成签到 ,获得积分10
14秒前
cell发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
平淡的翠霜完成签到,获得积分10
16秒前
Enoch发布了新的文献求助10
16秒前
冰魂应助曲曲采纳,获得10
17秒前
科研通AI5应助超帅的芷蕾采纳,获得10
17秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821905
求助须知:如何正确求助?哪些是违规求助? 3364408
关于积分的说明 10429719
捐赠科研通 3083075
什么是DOI,文献DOI怎么找? 1695994
邀请新用户注册赠送积分活动 815428
科研通“疑难数据库(出版商)”最低求助积分说明 769148