Investigation of effective parameters on streaming-induced acoustophoretic particle manipulation in a microchannel via three-dimensional numerical simulation

声流 微通道 声辐射力 物理 阻力 机械 粒子(生态学) 声波 粘度 声学 超声波传感器 光学 超声波 热力学 海洋学 地质学
作者
Sanaz Marefati,Majid Ghassemi,Vahid Ghazizadeh
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (1) 被引量:10
标识
DOI:10.1063/5.0077392
摘要

Particle manipulation using ultrasonic standing waves has gained increased attention in recent years as it is efficient and noninvasive. In order to predict the effects of acoustic streaming on the concentration of particles in the actual microchannel geometry, this paper presents a 3D numerical study on the transient motion of microparticles suspended in a liquid-filled microchannel, considering the mixed standing and traveling waves. The motion was generated by the acoustic radiation force and acoustic streaming-induced drag force arising from an imposed bulk acoustic wave and the hydrodynamic drag. The acoustic streaming patterns in the 3D microchannel were investigated using the limiting velocity method. In addition, the effects of the 3D streaming pattern in an acoustofluidic device on the acoustophoretic motion of microparticles were evaluated. The concentration of polystyrene particles was simulated for many particles with diameters of 0.5, 2, and 5 μm released from random initial locations. The obtained results indicate a balance between the flow rate and the particle diameter to achieve the highest concentration percentage. Increasing the height increased the concentration of large 5-μm-diameter particles to more than 80%. By doubling the length of the piezoelectrically actuated region, the concentration of 2-μm particles improved by approximately 20%. Finally, increasing the viscosity of the fluid by using a 50% glycerol-in-water mixture resulted in a greater effect of acoustic streaming. This study can provide helpful guidance for optimizing the design of acoustofluidic devices to enhance experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助笑哈哈采纳,获得10
刚刚
科研小白发布了新的文献求助10
刚刚
xiixix发布了新的文献求助20
刚刚
1秒前
李健应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
hanzhipad应助科研通管家采纳,获得10
2秒前
2秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
彭于晏应助高点点采纳,获得10
3秒前
3秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
3秒前
Sean发布了新的文献求助10
5秒前
JamesPei应助章慕思采纳,获得10
5秒前
小杨爱晒太阳完成签到,获得积分10
5秒前
感性的穆完成签到,获得积分10
6秒前
wzzznh发布了新的文献求助10
6秒前
好好好完成签到 ,获得积分10
7秒前
XCXC应助你好采纳,获得10
8秒前
科研通AI5应助务实可乐采纳,获得10
9秒前
Ashes应助zhou采纳,获得30
10秒前
10秒前
小玉应助Sean采纳,获得10
12秒前
13秒前
lois完成签到,获得积分20
14秒前
科研不通发布了新的文献求助10
14秒前
欣喜谷槐完成签到,获得积分10
14秒前
嘘嘘完成签到,获得积分10
15秒前
jiujiuwo完成签到,获得积分10
16秒前
开朗冬萱完成签到 ,获得积分10
16秒前
牛牛要当院士喽完成签到,获得积分10
17秒前
starts发布了新的文献求助10
18秒前
汉堡包应助Fine采纳,获得10
18秒前
合适不愁完成签到,获得积分10
19秒前
19秒前
Sean完成签到,获得积分10
20秒前
shengwang完成签到,获得积分10
20秒前
科研通AI5应助heli采纳,获得10
21秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828040
求助须知:如何正确求助?哪些是违规求助? 3370323
关于积分的说明 10462906
捐赠科研通 3090294
什么是DOI,文献DOI怎么找? 1700312
邀请新用户注册赠送积分活动 817813
科研通“疑难数据库(出版商)”最低求助积分说明 770458