Associations between gut microbiota composition and AD biomarkers

肠道菌群 逻辑回归 痴呆 优势比 医学 内科学 曲线下面积 微生物群 疾病 生物 免疫学 生物信息学
作者
Barbara J. H. Verhaar,Heleen M.A. Hendriksen,Francisca A. de Leeuw,Astrid S. Doorduijn,Mardou van Leeuwenstijn,Charlotte E. Teunissen,Bart N.M. van Berckel,Frederik Barkhof,Philip Scheltens,Robert Kraaij,Cornelia M. van Duijn,Max Nieuwdorp,Majon Muller,Wiesje M. van der Flier
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:17 (S5) 被引量:1
标识
DOI:10.1002/alz.057781
摘要

Abstract Background Several studies have reported alterations in gut microbiota composition of Alzheimer’s disease (AD) patients. However, the observed differences are not consistent across studies. We aimed to investigate associations between gut microbiota composition and clinical biomarkers of AD using machine learning models in patients with AD dementia, mild cognitive impairment (MCI) and controls. Method We included 169 patients from the NUDAD project, comprising 33 with AD dementia (66±8 years, 46%F, MMSE 21[19‐24]), 21 with MCI (64±8 years, 43%F, MMSE 27[25‐29]) and 115 controls (62±8 years, 44%F, MMSE 29[28‐30]). Fecal samples were collected and gut microbiome composition was determined using 16S rRNA sequencing. Clinical parameters of AD included clinical diagnosis, cerebral spinal fluid (CSF) amyloid and phosphorylated tau (pTau) status, positron emission tomography (PET) amyloid status, and MRI visual scores. Associations between gut microbiota composition and dichotomized clinical parameters of AD were assessed with separate machine learning classification models using XGBoost with nested cross‐validation. The model with the highest area under the curve (AUC) was selected for logistic regression, to assess associations between the 20 best predicting microbes (cumulative sum scaled counts) and the outcome measure from this machine learning model while adjusting for age, sex, and BMI. Result The machine learning prediction for amyloid status (CSF) from microbiota composition had the highest AUC. Top predicting microbes included several short chain fatty acid (SCFA)‐producing species. In the logistic regression models, these microbes were significantly associated with lower odds of amyloid positive status, and included Eubacterium ventriosum group spp. (OR 0.49 (0.30‐0.76) per SD increase in counts, p = 0.002), Marvinbryantia spp. (OR 0.55 (0.34‐0.85), p = 0.009), Coprococcus catus (OR 0.58 (0.36‐0.89), p = 0.017), Roseburia hominis (OR 0.59 (0.38‐0.90), p = 0.018), Odoribacter splanchnicus (OR 0.51 (0.30‐0.82), p = 0.008), Lachnospiraceae spp. (OR 0.58 (0.36‐0.89), p = 0.014), and Ruminococcaceae spp. (OR 0.44 (0.25‐0.71), p = 0.002). Conclusion Gut microbiota composition had the strongest association with amyloid status among the clinical biomarkers examined. We extend on recent studies that observed associations between SCFA levels and AD biomarkers by showing that higher abundances of SCFA‐producing microbes were associated with lower odds of amyloid positive status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
李俊枫完成签到,获得积分10
1秒前
Ava应助xhj采纳,获得10
1秒前
3秒前
思源应助yaoyao采纳,获得10
3秒前
娄心昊发布了新的文献求助10
3秒前
3秒前
彭于晏应助高贵的画笔采纳,获得10
4秒前
juphen2发布了新的文献求助10
4秒前
Lucas应助哈喽采纳,获得30
5秒前
单纯夏烟完成签到,获得积分10
6秒前
6秒前
shengyufen完成签到,获得积分10
7秒前
科研通AI2S应助zake采纳,获得10
8秒前
9秒前
bkagyin应助石石刘采纳,获得10
10秒前
10秒前
LHX发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
KingZ333完成签到,获得积分10
13秒前
xhj发布了新的文献求助10
13秒前
14秒前
高贵的画笔完成签到,获得积分20
15秒前
15秒前
15秒前
木南发布了新的文献求助20
16秒前
17秒前
xupeng发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
cleva发布了新的文献求助10
19秒前
19秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916140
求助须知:如何正确求助?哪些是违规求助? 3461652
关于积分的说明 10918265
捐赠科研通 3188510
什么是DOI,文献DOI怎么找? 1762665
邀请新用户注册赠送积分活动 853030
科研通“疑难数据库(出版商)”最低求助积分说明 793613