Associations between gut microbiota composition and AD biomarkers

肠道菌群 逻辑回归 痴呆 优势比 医学 内科学 曲线下面积 微生物群 疾病 生物 免疫学 生物信息学
作者
Barbara J. H. Verhaar,Heleen M.A. Hendriksen,Francisca A. de Leeuw,Astrid S. Doorduijn,Mardou van Leeuwenstijn,Charlotte E. Teunissen,Bart N.M. van Berckel,Frederik Barkhof,Philip Scheltens,Robert Kraaij,Cornelia M. van Duijn,Max Nieuwdorp,Majon Muller,Wiesje M. van der Flier
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:17 (S5) 被引量:1
标识
DOI:10.1002/alz.057781
摘要

Abstract Background Several studies have reported alterations in gut microbiota composition of Alzheimer’s disease (AD) patients. However, the observed differences are not consistent across studies. We aimed to investigate associations between gut microbiota composition and clinical biomarkers of AD using machine learning models in patients with AD dementia, mild cognitive impairment (MCI) and controls. Method We included 169 patients from the NUDAD project, comprising 33 with AD dementia (66±8 years, 46%F, MMSE 21[19‐24]), 21 with MCI (64±8 years, 43%F, MMSE 27[25‐29]) and 115 controls (62±8 years, 44%F, MMSE 29[28‐30]). Fecal samples were collected and gut microbiome composition was determined using 16S rRNA sequencing. Clinical parameters of AD included clinical diagnosis, cerebral spinal fluid (CSF) amyloid and phosphorylated tau (pTau) status, positron emission tomography (PET) amyloid status, and MRI visual scores. Associations between gut microbiota composition and dichotomized clinical parameters of AD were assessed with separate machine learning classification models using XGBoost with nested cross‐validation. The model with the highest area under the curve (AUC) was selected for logistic regression, to assess associations between the 20 best predicting microbes (cumulative sum scaled counts) and the outcome measure from this machine learning model while adjusting for age, sex, and BMI. Result The machine learning prediction for amyloid status (CSF) from microbiota composition had the highest AUC. Top predicting microbes included several short chain fatty acid (SCFA)‐producing species. In the logistic regression models, these microbes were significantly associated with lower odds of amyloid positive status, and included Eubacterium ventriosum group spp. (OR 0.49 (0.30‐0.76) per SD increase in counts, p = 0.002), Marvinbryantia spp. (OR 0.55 (0.34‐0.85), p = 0.009), Coprococcus catus (OR 0.58 (0.36‐0.89), p = 0.017), Roseburia hominis (OR 0.59 (0.38‐0.90), p = 0.018), Odoribacter splanchnicus (OR 0.51 (0.30‐0.82), p = 0.008), Lachnospiraceae spp. (OR 0.58 (0.36‐0.89), p = 0.014), and Ruminococcaceae spp. (OR 0.44 (0.25‐0.71), p = 0.002). Conclusion Gut microbiota composition had the strongest association with amyloid status among the clinical biomarkers examined. We extend on recent studies that observed associations between SCFA levels and AD biomarkers by showing that higher abundances of SCFA‐producing microbes were associated with lower odds of amyloid positive status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴扣三米线完成签到,获得积分10
刚刚
Moeim Keller完成签到,获得积分10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
阿崔发布了新的文献求助10
4秒前
笨笨芯应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
WN完成签到,获得积分10
7秒前
知性的友易完成签到,获得积分10
9秒前
失眠的向日葵完成签到 ,获得积分10
10秒前
赘婿应助暴扣三米线采纳,获得10
11秒前
星辰大海应助争气采纳,获得10
13秒前
14秒前
苗条馒头完成签到,获得积分10
16秒前
fff完成签到,获得积分10
17秒前
熹熹发布了新的文献求助10
20秒前
23秒前
ww完成签到,获得积分10
26秒前
28秒前
Sweety-发布了新的文献求助10
30秒前
缓慢的海云完成签到,获得积分10
31秒前
刻苦的幻巧完成签到 ,获得积分10
34秒前
若雨凌风应助细心秀发采纳,获得20
35秒前
乐乐应助小谢同学采纳,获得10
37秒前
健忘幻儿完成签到 ,获得积分10
38秒前
39秒前
克姑美完成签到 ,获得积分10
40秒前
科研小狗完成签到,获得积分10
44秒前
独特大米发布了新的文献求助10
45秒前
塵埃完成签到,获得积分10
48秒前
我以為忘了想念完成签到 ,获得积分10
48秒前
香蕉觅云应助等待的夜香采纳,获得30
48秒前
熹熹完成签到,获得积分10
54秒前
Deerlu完成签到,获得积分10
55秒前
55秒前
56秒前
慕青应助Sweety-采纳,获得10
57秒前
炎魔之王拉格纳罗斯完成签到,获得积分10
57秒前
袁大头发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783164
求助须知:如何正确求助?哪些是违规求助? 3328499
关于积分的说明 10236658
捐赠科研通 3043569
什么是DOI,文献DOI怎么找? 1670599
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119