Knowledge Enhanced Graph Neural Networks for Explainable Recommendation

计算机科学 可解释性 推荐系统 图形 人工智能 情报检索 知识库 知识表示与推理 人工神经网络 机器学习 理论计算机科学
作者
Ziyu Lyu,Yue Wu,Junjie Lai,Min Yang,Chengming Li,Wei Zhou
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-1 被引量:36
标识
DOI:10.1109/tkde.2022.3142260
摘要

Recently, explainable recommendation has attracted increasing attentions, which can make the recommender system more transparent and improve user satisfactions by recommending products with useful explanations. However, existing methods trend to trade-off between the recommendation accuracy and the interpretability of recommendation results. In this manuscript, we propose Knowledge Enhanced Graph Neural Networks (KEGNN) for explainable recommendation. Semantic knowledge from the external knowledge base is leveraged into representation learning of three sides, respectively user, items and user-item interactions, and the knowledge enhanced semantic embedding are exploited to initialize the user/item entities and user-item relations of one constructed user behavior graph. We design a graph neural networks based user behavior learning and reasoning model to perform both semantic and relational knowledge propagation and reasoning over the user behavior graph for comprehensive understanding of user behaviors. On the top of comprehensive representations of users/items and user-item interactions, hierarchical neural collaborative filtering layers are developed for precise rating prediction, and one generation-mode and copy-mode combined generator is devised for human-like semantic explanation generation by integrating the copy mechanism into gated recurrent neural networks. Quantitative and qualitative results demonstrate the superiority of KEGNN over the state-of-art methods, and the explainability and interpretability of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sepsp发布了新的文献求助150
2秒前
jyy应助刻苦紫文采纳,获得10
3秒前
陈大大发布了新的文献求助10
3秒前
TaoJ发布了新的文献求助10
4秒前
wanci应助siv采纳,获得10
4秒前
6秒前
小周很酷完成签到,获得积分10
7秒前
小海应助fang采纳,获得10
8秒前
打打应助ceeray23采纳,获得20
8秒前
三岁居居发布了新的文献求助10
8秒前
11632发布了新的文献求助10
13秒前
CASLSD完成签到 ,获得积分10
13秒前
genesquared完成签到,获得积分10
14秒前
14秒前
HongqiZhang完成签到 ,获得积分10
16秒前
songblue发布了新的文献求助10
17秒前
Rongbid完成签到 ,获得积分10
19秒前
Carol_Wang发布了新的文献求助10
19秒前
科研通AI5应助LHL采纳,获得10
20秒前
lihang完成签到,获得积分10
20秒前
昔年若许完成签到,获得积分10
20秒前
幸福糖豆完成签到,获得积分10
21秒前
动听牛排应助轩辕德地采纳,获得20
22秒前
qqqq22完成签到,获得积分10
23秒前
23秒前
dhfify完成签到 ,获得积分10
23秒前
hhhh完成签到,获得积分10
24秒前
CodeCraft应助科研通管家采纳,获得20
26秒前
乐乐应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
HEAUBOOK应助科研通管家采纳,获得10
27秒前
小宋应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
Nia完成签到,获得积分10
28秒前
丘比特应助lilac采纳,获得10
30秒前
30秒前
tunacan完成签到 ,获得积分10
30秒前
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785695
求助须知:如何正确求助?哪些是违规求助? 3331153
关于积分的说明 10250274
捐赠科研通 3046583
什么是DOI,文献DOI怎么找? 1672134
邀请新用户注册赠送积分活动 801008
科研通“疑难数据库(出版商)”最低求助积分说明 759970