清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MRCON-Net: Multiscale Reweighted Convolutional Coding Neural Network for Low-Dose CT Imaging

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 深度学习 神经编码 可解释性 源代码
作者
Jin Liu,Yanqin Kang,Zhenyu Xia,Jun Qiang,JunFeng Zhang,Yikun Zhang,Chen Yang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:: 106851-106851
标识
DOI:10.1016/j.cmpb.2022.106851
摘要

Low-dose computed tomography (LDCT) has become increasingly important for alleviating X-ray radiation damage. However, reducing the administered radiation dose may lead to degraded CT images with amplified mottle noise and nonstationary streak artifacts. Previous studies have confirmed that deep learning (DL) is promising for improving LDCT imaging. However, most DL-based frameworks are built intuitively, lack interpretability, and suffer from image detail information loss, which has become a general challenging issue.A multiscale reweighted convolutional coding neural network (MRCON-Net) is developed to address the above problems. MRCON-Net is compact and more explainable than other networks. First, inspired by the learning-based reweighted iterative soft thresholding algorithm (ISTA), we extend traditional convolutional sparse coding (CSC) to its reweighted convolutional learning form. Second, we use dilated convolution to extract multiscale image features, allowing our single model to capture the correlations between features of different scales. Finally, to automatically adjust the elements in the feature code to correct the obtained solution, a channel attention (CA) mechanism is utilized to learn appropriate weights.The visual results obtained based on the American Association of Physicians in Medicine (AAPM) Challenge and United Image Healthcare (UIH) clinical datasets confirm that the proposed model significantly reduces serious artifact noise while retaining the desired structures. Quantitative results show that the average structural similarity index measurement (SSIM) and peak signal-to-noise ratio (PSNR) achieved on the AAPM Challenge dataset are 0.9491 and 40.66, respectively, and the SSIM and PSNR achieved on the UIH clinical dataset are 0.915 and 42.44, respectively; these are promising quantitative results.Compared with recent state-of-the-art methods, the proposed model achieves subtle structure-enhanced LDCT imaging. In addition, through ablation studies, the components of the proposed model are validated to achieve performance improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
通过此项完成签到 ,获得积分10
11秒前
儒雅沛凝完成签到 ,获得积分10
15秒前
gao完成签到 ,获得积分10
28秒前
飞龙在天完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助10
33秒前
犹豫野狼完成签到 ,获得积分10
37秒前
滕皓轩完成签到 ,获得积分10
39秒前
孤独剑完成签到 ,获得积分10
40秒前
孙老师完成签到 ,获得积分10
56秒前
whuhustwit完成签到,获得积分10
1分钟前
脑洞疼应助谦让新竹采纳,获得10
1分钟前
ccc完成签到 ,获得积分10
1分钟前
lyj完成签到 ,获得积分10
1分钟前
gggg完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
HMR完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
海阔天空完成签到 ,获得积分10
1分钟前
111完成签到 ,获得积分10
1分钟前
sophia完成签到 ,获得积分10
2分钟前
风趣的梦露完成签到 ,获得积分10
2分钟前
CipherSage应助咯咯咯采纳,获得10
2分钟前
2分钟前
侠医2012完成签到,获得积分0
2分钟前
雪山飞龙发布了新的文献求助10
2分钟前
Regulusyang完成签到,获得积分10
2分钟前
2分钟前
Java完成签到,获得积分10
2分钟前
妇产科医生完成签到 ,获得积分10
3分钟前
谦让新竹发布了新的文献求助10
3分钟前
3分钟前
北雨完成签到,获得积分10
3分钟前
田様应助Xinghe采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
万邦德完成签到,获得积分10
3分钟前
4分钟前
rockyshi完成签到 ,获得积分10
4分钟前
胖头鱼完成签到 ,获得积分10
4分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4143344
求助须知:如何正确求助?哪些是违规求助? 3679490
关于积分的说明 11627863
捐赠科研通 3372667
什么是DOI,文献DOI怎么找? 1852458
邀请新用户注册赠送积分活动 915187
科研通“疑难数据库(出版商)”最低求助积分说明 829702