强化学习
钢筋
跟踪(教育)
控制(管理)
计算机科学
点(几何)
功率(物理)
在线学习
控制理论(社会学)
人工智能
心理学
数学
社会心理学
物理
多媒体
量子力学
教育学
几何学
作者
Ayman Youssef,Mohammed E. El-Telbany,Abdelhalim Zekry
出处
期刊:Journal of Clean Energy Technologies
[EJournal Publishing]
日期:2015-01-01
卷期号:4 (4): 245-248
被引量:17
标识
DOI:10.7763/jocet.2016.v4.290
摘要
The world wide resource crisis led scientists and engineers to search for renewable energy sources.Photovoltaic systems are one of the most important renewable energy sources.In this paper we propose an intelligent solution for solving the maximum power point tracking problem in photovoltaic systems.The proposed controller is based on reinforcement learning techniques.The algorithm performance far exceeds the performance of traditional maximum power point tracking techniques.The algorithm not only reaches the optimum power it learns also from the environment without any prior knowledge or offline learning.The proposed control algorithm solves the problem of maximum power point tracking under different environment conditions and partial shading conditions.The simulations results show satisfactory dynamic and static response and superior performance over famous perturb and observe algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI