已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatial Context-Aware Self-Attention Model For Multi-Organ Segmentation

计算机科学 人工智能 分割 卷积神经网络 尺度空间分割 图像分割 背景(考古学) 深度学习 模式识别(心理学) 卷积(计算机科学) 计算机视觉 基于分割的对象分类 图像分辨率 人工神经网络 生物 古生物学
作者
Hao Tang,Xuemei Liu,Kun Han,Xiaohui Xie,Xuming Chen,Qian Huang,Yong Liu,Shanlin Sun,Narisu Bai
标识
DOI:10.1109/wacv48630.2021.00098
摘要

Multi-organ segmentation is one of most successful applications of deep learning in medical image analysis. Deep convolutional neural nets (CNNs) have shown great promise in achieving clinically applicable image segmentation performance on CT or MRI images. State-of-the-art CNN segmentation models apply either 2D or 3D convolutions on input images, with pros and cons associated with each method: 2D convolution is fast, less memory-intensive but inadequate for extracting 3D contextual information from volumetric images, while the opposite is true for 3D convolution. To fit a 3D CNN model on CT or MRI images on commodity GPUs, one usually has to either downsample input images or use cropped local regions as inputs, which limits the utility of 3D models for multi-organ segmentation. In this work, we propose a new framework for combining 3D and 2D models, in which the segmentation is realized through high-resolution 2D convolutions, but guided by spatial contextual information extracted from a low-resolution 3D model. We implement a self-attention mechanism to control which 3D features should be used to guide 2D segmentation. Our model is light on memory usage but fully equipped to take 3D contextual information into account. Experiments on multiple organ segmentation datasets demonstrate that by taking advantage of both 2D and 3D models, our method is consistently outperforms existing 2D and 3D models in organ segmentation accuracy, while being able to directly take raw whole-volume image data as inputs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月屿完成签到 ,获得积分10
刚刚
1秒前
qwdqw完成签到,获得积分10
2秒前
JamesPei应助贾舒涵采纳,获得10
4秒前
Yam呀完成签到 ,获得积分10
4秒前
5秒前
桐桐应助哈哈哈开开心心采纳,获得10
5秒前
脑洞疼应助Wish采纳,获得10
7秒前
无聊的兔子完成签到,获得积分10
7秒前
8秒前
9秒前
科研通AI5应助UU采纳,获得10
10秒前
勤劳糜发布了新的文献求助30
10秒前
kearthy发布了新的文献求助10
11秒前
珷玞完成签到,获得积分10
15秒前
科研通AI5应助Aphelion采纳,获得10
17秒前
17秒前
19秒前
yanmengzhen完成签到 ,获得积分10
20秒前
zhao完成签到 ,获得积分10
22秒前
核桃应助一一采纳,获得10
24秒前
财源滚滚发布了新的文献求助10
24秒前
顺利的寒云完成签到 ,获得积分10
25秒前
贾舒涵发布了新的文献求助10
26秒前
皛皛完成签到 ,获得积分10
27秒前
善学以致用应助1793275356采纳,获得10
28秒前
DaLu发布了新的文献求助10
29秒前
舒心抽屉完成签到 ,获得积分10
30秒前
缥缈的芷卉完成签到 ,获得积分10
31秒前
MchemG应助财源滚滚采纳,获得10
31秒前
31秒前
zzzzzz完成签到 ,获得积分10
33秒前
慕青应助无情的不评采纳,获得10
34秒前
Luminous完成签到 ,获得积分10
34秒前
酷波er应助木木采纳,获得10
35秒前
36秒前
42秒前
万能图书馆应助财源滚滚采纳,获得10
42秒前
42秒前
zfj完成签到 ,获得积分10
42秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788098
求助须知:如何正确求助?哪些是违规求助? 3333579
关于积分的说明 10262519
捐赠科研通 3049385
什么是DOI,文献DOI怎么找? 1673537
邀请新用户注册赠送积分活动 802042
科研通“疑难数据库(出版商)”最低求助积分说明 760477