已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrating Multi-Source Data for Rice Yield Prediction across China using Machine Learning and Deep Learning Approaches

随机森林 Lasso(编程语言) 均方误差 卫星 测距 机器学习 增强植被指数 计算机科学 植被(病理学) 归一化差异植被指数 预测建模 产量(工程) 环境科学 人工智能 遥感 气候变化 统计 数学 地理 植被指数 工程类 生态学 万维网 病理 航空航天工程 生物 冶金 材料科学 电信 医学
作者
Juan Cao,Zhao Zhang,Fulu Tao,Liangliang Zhang,Yuchuan Luo,Jing Zhang,Jichong Han,Xie Jun
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:297: 108275-108275 被引量:205
标识
DOI:10.1016/j.agrformet.2020.108275
摘要

Timely and reliable yield prediction at a large scale is imperative and prerequisite to prevent climate risk and ensure food security, especially with climate change and increasing extreme climate events. In this study, integrating the publicly available data (i.e., satellite vegetation indexes, meteorological indexes, and soil properties) within the Google Earth Engine (GEE) platform, we developed one Least Absolute Shrinkage and Selection Operator (LASSO) regression, one machine learning (Random Forest, RF), and one deep learning (Long Short-Term Memory Networks, LSTM) model to predict rice yield at county-level across China. For satellite data, we compared the contiguous solar-induced chlorophyll fluorescence (SIF), a newly emerging satellite retrieval, with a traditional vegetation index (enhanced vegetation index, EVI). The results showed that LSTM (with R2 ranging from 0.77 to 0.87, RMSE from 298.11 to 724kg/ha) and RF (with R2 ranging from 0.76 to 0.82, RMSE from 366 to 723.3 kg/ha) models outperformed LASSO (with R2 ranging from 0.33 to 0.42, RMSE from 633.46 kg/ha to 1231.39 kg/ha) in yield prediction; and LSTM was better than RF. Besides, ESI (combining EVI and SIF together) could slightly improve the model performance compared with only using EVI or SIF as the single input, primarily due to the ability of satellite-based SIF in capturing extra information on drought and heat stress. Furthermore, we also explored the potential for timely rice yield prediction, and concluded that the optimal prediction could be achieved with approximately two/one-month leading-time before single/double rice maturity. Our findings demonstrated a scalable, simple and inexpensive methods for timely predicting rice yield over a large area with publicly available multi-source data, which can potentially be applied to areas with sparsely observed data and worldwide for estimating crop yields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小h完成签到,获得积分10
刚刚
2秒前
3秒前
Alex应助hajy采纳,获得20
3秒前
Hello应助科研通管家采纳,获得20
4秒前
烟花应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
man应助科研通管家采纳,获得20
4秒前
4秒前
今天吃烧麦了吗完成签到,获得积分10
6秒前
zhanghao完成签到 ,获得积分10
6秒前
ljy阿完成签到 ,获得积分10
7秒前
李志华发布了新的文献求助10
9秒前
9秒前
科研通AI2S应助Wang采纳,获得10
9秒前
赘婿应助Wang采纳,获得10
9秒前
13秒前
Jay完成签到,获得积分10
17秒前
wakao完成签到,获得积分20
19秒前
英俊的铭应助Bruial采纳,获得10
21秒前
满意冷荷完成签到,获得积分10
23秒前
李志华完成签到,获得积分10
24秒前
Kyle关注了科研通微信公众号
25秒前
ugyg完成签到,获得积分20
25秒前
29秒前
31秒前
Tiam发布了新的文献求助10
33秒前
苟利国家生死以完成签到,获得积分10
35秒前
科研通AI5应助Moislad采纳,获得10
35秒前
许瑞杰发布了新的文献求助10
36秒前
42秒前
45秒前
Tiam完成签到,获得积分10
46秒前
46秒前
47秒前
ugyg关注了科研通微信公众号
48秒前
48秒前
49秒前
49秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784673
求助须知:如何正确求助?哪些是违规求助? 3329836
关于积分的说明 10243563
捐赠科研通 3045204
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800480
科研通“疑难数据库(出版商)”最低求助积分说明 759416