Joint Weakly and Semi-Supervised Deep Learning for Localization and Classification of Masses in Breast Ultrasound Images

人工智能 接头(建筑物) 模式识别(心理学) 计算机科学 乳腺超声检查 超声成像 乳房成像 乳腺摄影术 计算机视觉 超声波 放射科 医学 乳腺癌 工程类 建筑工程 内科学 癌症
作者
Seung Yeon Shin,Soochahn Lee,Il Dong Yun,Sun Mi Kim,Kyoung Mu Lee
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (3): 762-774 被引量:145
标识
DOI:10.1109/tmi.2018.2872031
摘要

We propose a framework for localization and classification of masses in breast ultrasound images. We have experimentally found that training convolutional neural network-based mass detectors with large, weakly annotated datasets presents a non-trivial problem, while overfitting may occur with those trained with small, strongly annotated datasets. To overcome these problems, we use a weakly annotated dataset together with a smaller strongly annotated dataset in a hybrid manner. We propose a systematic weakly and semi-supervised training scenario with appropriate training loss selection. Experimental results show that the proposed method can successfully localize and classify masses with less annotation effort. The results trained with only 10 strongly annotated images along with weakly annotated images were comparable to results trained from 800 strongly annotated images, with the 95% confidence interval (CI) of difference -3%-5%, in terms of the correct localization (CorLoc) measure, which is the ratio of images with intersection over union with ground truth higher than 0.5. With the same number of strongly annotated images, additional weakly annotated images can be incorporated to give a 4.5% point increase in CorLoc, from 80% to 84.50% (with 95% CIs 76%-83.75% and 81%-88%). The effects of different algorithmic details and varied amount of data are presented through ablative analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
脑洞疼应助peipei采纳,获得10
刚刚
万能图书馆应助与水皆水采纳,获得10
刚刚
刚刚
Alias完成签到,获得积分10
刚刚
刚刚
王宇博关注了科研通微信公众号
1秒前
Frozenme发布了新的文献求助10
1秒前
pikopiko完成签到,获得积分10
1秒前
浮游应助端庄的山蝶采纳,获得10
1秒前
dw发布了新的文献求助50
1秒前
37完成签到,获得积分10
1秒前
晨曦完成签到,获得积分20
2秒前
zjs226688发布了新的文献求助10
2秒前
浮游应助樊璐采纳,获得10
2秒前
科研通AI2S应助shui采纳,获得10
2秒前
2秒前
万能图书馆应助三色堇采纳,获得10
3秒前
3秒前
薰衣草发布了新的文献求助10
4秒前
君君完成签到,获得积分20
5秒前
希望天下0贩的0应助LucyLi采纳,获得10
5秒前
xxx完成签到,获得积分10
6秒前
6秒前
fzh发布了新的文献求助10
7秒前
无机盐发布了新的文献求助10
7秒前
梅子菁关注了科研通微信公众号
8秒前
8秒前
浮游应助withone采纳,获得10
8秒前
乔垣结衣发布了新的文献求助10
8秒前
9秒前
Luffy发布了新的文献求助10
9秒前
dxszing完成签到 ,获得积分10
9秒前
Garrlirva完成签到,获得积分10
9秒前
9秒前
开朗寇发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097403
求助须知:如何正确求助?哪些是违规求助? 4309929
关于积分的说明 13428703
捐赠科研通 4137399
什么是DOI,文献DOI怎么找? 2266602
邀请新用户注册赠送积分活动 1269747
关于科研通互助平台的介绍 1206069