Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization

计算机科学 人工智能 水准点(测量) 深度学习 机器学习 超参数 卷积神经网络 人工神经网络 贝叶斯概率 时间序列 2019年冠状病毒病(COVID-19) 地理 病理 医学 传染病(医学专业) 疾病 大地测量学
作者
Hossein Abbasimehr,Reza Paki
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:142: 110511-110511 被引量:99
标识
DOI:10.1016/j.chaos.2020.110511
摘要

COVID-19 virus has encountered people in the world with numerous problems. Given the negative impacts of COVID-19 on all aspects of people's lives, especially health and economy, accurately forecasting the number of cases infected with this virus can help governments to make accurate decisions on the interventions that must be taken. In this study, we propose three hybrid approaches for forecasting COVID-19 time series methods based on combining three deep learning models such as multi-head attention, long short-term memory (LSTM), and convolutional neural network (CNN) with the Bayesian optimization algorithm. All models are designed based on the multiple-output forecasting strategy, which allows the forecasting of the multiple time points. The Bayesian optimization method automatically selects the best hyperparameters for each model and enhances forecasting performance. Using the publicly available epidemical data acquired from Johns Hopkins University's Coronavirus Resource Center, we conducted our experiments and evaluated the proposed models against the benchmark model. The results of experiments exhibit the superiority of the deep learning models over the benchmark model both for short-term forecasting and long-horizon forecasting. In particular, the mean SMAPE of the best deep learning model is 0.25 for the short-term forecasting (10 days ahead). Also, for long-horizon forecasting, the best deep learning model obtains the mean SMAPE of 2.59.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助拒绝去偏旁采纳,获得10
1秒前
NexusExplorer应助Moi采纳,获得10
2秒前
英俊的铭应助儒雅的菲鹰采纳,获得10
2秒前
Owen应助黄云采纳,获得10
3秒前
梦里虾米完成签到,获得积分10
4秒前
应化打工人完成签到,获得积分10
4秒前
无辜洋葱完成签到,获得积分10
4秒前
4秒前
沉静青旋发布了新的文献求助10
4秒前
乐观的谷冬完成签到 ,获得积分10
5秒前
5秒前
烟花应助雪白的山雁采纳,获得10
6秒前
6秒前
6秒前
平淡南松发布了新的文献求助10
6秒前
科研通AI5应助叶子小丙采纳,获得10
6秒前
xlxlxl完成签到,获得积分10
7秒前
mubiguo完成签到,获得积分20
7秒前
倩迷谜完成签到,获得积分0
7秒前
沉迷于二次妹完成签到,获得积分20
8秒前
8秒前
Lucas应助梁发发采纳,获得10
8秒前
英姑应助ss采纳,获得10
8秒前
8秒前
9秒前
MichaelQin发布了新的文献求助10
9秒前
阿嚏完成签到,获得积分10
10秒前
NO_9527完成签到,获得积分10
10秒前
追寻紫安发布了新的文献求助10
10秒前
10秒前
赵维雪发布了新的文献求助10
11秒前
影子发布了新的文献求助10
11秒前
11秒前
天天快乐应助高糕采纳,获得10
11秒前
jkd发布了新的文献求助10
12秒前
qingkong完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
孤独如曼发布了新的文献求助10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813238
求助须知:如何正确求助?哪些是违规求助? 3357708
关于积分的说明 10387917
捐赠科研通 3074954
什么是DOI,文献DOI怎么找? 1689065
邀请新用户注册赠送积分活动 812546
科研通“疑难数据库(出版商)”最低求助积分说明 767177