吸附
阳离子聚合
磺酸盐
共价键
共价有机骨架
化学
选择性
亚胺
氢键
催化作用
高分子化学
无机化学
化学工程
分子
有机化学
钠
工程类
作者
Wei Jiang,Dong Peng,Wei‐Rong Cui,Ru‐Ping Liang,Jian‐Ding Qiu
出处
期刊:ACS omega
[American Chemical Society]
日期:2020-12-02
卷期号:5 (49): 32002-32010
被引量:45
标识
DOI:10.1021/acsomega.0c04904
摘要
The effective removal of organic pollutants in wastewater is a key environmental challenge. In this work, an anionic covalent organic framework (named TpPa-SO3Na) was synthesized through a green two-in-one synthesis strategy with autocatalytic imine formation. The slowly generated acetic acid as a catalyst is favorable to sustain the reversibility of the covalent organic framework (COF) formation reaction and improve the crystallinity of TpPa-SO3Na. TpPa-SO3Na consists of a homogeneous distribution of sulfonate groups to produce negatively charged regular channels. The strong electrostatic and hydrogen-bonding interactions between the sulfonate groups anchored in the nanochannels and the amine groups in organic pollutants improve the adsorption selectivity and capacity. These structures allow a high degree of control over adsorption processes to boost the adsorption kinetics and improve selective separation. TpPa-SO3Na exhibits ultrafast adsorption (<1 min) of cationic antibiotics and dyes (average over 95%). Furthermore, TpPa-SO3Na exhibits high selectivity for the uptake of dye molecules on the basis of the differences in charge and molecular size. This work explored functional designs and green manufacturing of anionic COFs for removal of hydrophilic organic pollutants.
科研通智能强力驱动
Strongly Powered by AbleSci AI