亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PWD-3DNet: A Deep Learning-Based Fully-Automated Segmentation of Multiple Structures on Temporal Bone CT Scans

分割 人工智能 计算机科学 颞骨 计算机视觉 体素 图像分割 平滑的 模式识别(心理学) 解剖 医学
作者
Soodeh Nikan,Kylen Van Osch,Mandolin Bartling,Daniel Allen,Sohrab Rohani,Ben Connors,Sumit Agrawal,Hanif M. Ladak
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 739-753 被引量:51
标识
DOI:10.1109/tip.2020.3038363
摘要

The temporal bone is a part of the lateral skull surface that contains organs responsible for hearing and balance. Mastering surgery of the temporal bone is challenging because of this complex and microscopic three-dimensional anatomy. Segmentation of intra-temporal anatomy based on computed tomography (CT) images is necessary for applications such as surgical training and rehearsal, amongst others. However, temporal bone segmentation is challenging due to the similar intensities and complicated anatomical relationships among critical structures, undetectable small structures on standard clinical CT, and the amount of time required for manual segmentation. This paper describes a single multi-class deep learning-based pipeline as the first fully automated algorithm for segmenting multiple temporal bone structures from CT volumes, including the sigmoid sinus, facial nerve, inner ear, malleus, incus, stapes, internal carotid artery and internal auditory canal. The proposed fully convolutional network, PWD-3DNet, is a patch-wise densely connected (PWD) three-dimensional (3D) network. The accuracy and speed of the proposed algorithm was shown to surpass current manual and semi-automated segmentation techniques. The experimental results yielded significantly high Dice similarity scores and low Hausdorff distances for all temporal bone structures with an average of 86% and 0.755 millimeter (mm), respectively. We illustrated that overlapping in the inference sub-volumes improves the segmentation performance. Moreover, we proposed augmentation layers by using samples with various transformations and image artefacts to increase the robustness of PWD-3DNet against image acquisition protocols, such as smoothing caused by soft tissue scanner settings and larger voxel sizes used for radiation reduction. The proposed algorithm was tested on low-resolution CTs acquired by another center with different scanner parameters than the ones used to create the algorithm and shows potential for application beyond the particular training data used in the study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
lmk完成签到 ,获得积分10
9秒前
11秒前
李桂芳完成签到,获得积分10
11秒前
16秒前
xj完成签到 ,获得积分10
18秒前
21秒前
25秒前
豆都发布了新的文献求助10
25秒前
25秒前
28秒前
在水一方应助hhhh采纳,获得10
31秒前
32秒前
张朋发布了新的文献求助10
33秒前
tdtk发布了新的文献求助10
37秒前
37秒前
细心的凝冬完成签到,获得积分10
39秒前
41秒前
展锋完成签到,获得积分10
45秒前
46秒前
我是老大应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
浮浮世世应助科研通管家采纳,获得30
50秒前
浮游应助科研通管家采纳,获得10
50秒前
浮浮世世应助科研通管家采纳,获得30
50秒前
浮游应助科研通管家采纳,获得10
50秒前
浮游应助科研通管家采纳,获得10
50秒前
浮浮世世应助科研通管家采纳,获得30
50秒前
劉浏琉完成签到,获得积分10
55秒前
剧院的饭桶完成签到,获得积分10
56秒前
py999完成签到,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
呜呼完成签到,获得积分10
1分钟前
1分钟前
月见完成签到 ,获得积分10
1分钟前
hhhh发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493754
求助须知:如何正确求助?哪些是违规求助? 4591769
关于积分的说明 14434606
捐赠科研通 4524156
什么是DOI,文献DOI怎么找? 2478694
邀请新用户注册赠送积分活动 1463684
关于科研通互助平台的介绍 1436464