MARLISA

计算机科学 强化学习 可扩展性 可再生能源 微电网 需求响应 动态定价 分布式计算 控制(管理) 工程类 人工智能 数据库 电气工程 业务 营销
作者
José R. Vázquez-Canteli,Gregor P. Henze,Zoltán Nagy
标识
DOI:10.1145/3408308.3427604
摘要

We demonstrate that multi-agent reinforcement learning (RL) controllers can cooperate to provide more effective load shaping in a model-free, decentralized, and scalable way with very limited sharing of anonymous information. Rapid urbanization, increasing electrification, the integration of renewable energy resources, and the potential shift towards electric vehicles create new challenges for the planning and control of energy systems in smart cities. Energy storage resources can help better align peaks of renewable energy generation with peaks of electricity consumption and flatten the curve of electricity demand. Model-based controllers, such as MPC, require developing models of the systems controlled, which is often not cost-effective or scalable. Model-free controllers, such as RL, have the potential to provide good control policies cost-effectively and leverage the use of historical data for training. However, it is unclear how RL algorithms can control a multitude of energy systems in a scalable coordinated way. In this paper, we introduce MARLISA, a controller that combines multi-agent RL with our proposed iterative sequential action selection algorithm for load shaping in urban energy systems. This approach uses a reward function with individual and collective goals, and the agents predict their own future electricity consumption and share this information with each other following a leader-follower schema. The RL agents are tested in four groups of nine simulated buildings, with each group located in a different climate. The buildings have diverse load and domestic hot water profiles, PV panels, thermal storage devices, heat pumps, and electric heaters. The agents are evaluated on the average of five normalized metrics: annual net electric consumption, 1 -- load factor, average daily peak demand, annual peak demand, and ramping. MARLISA achieves superior results over multiple independent/uncooperative RL agents using the same reward function. Our results outperformed a manually optimized rule-based controller (RBC) benchmark by reducing the average daily peak load by 15%, ramping by 35%, and increasing the load factor by 10%. A multi-year case study on real weather data shows that MARLISA significantly outperforms the RBC in within a year and converges in less than 2 years. Combining MARLISA and the RBC for the first year improves overall initial performance by learning from the RBC rather than random exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助章鱼哥想毕业采纳,获得10
刚刚
None发布了新的文献求助10
1秒前
阿鹿发布了新的文献求助10
1秒前
kkk完成签到,获得积分10
2秒前
孙畅完成签到,获得积分10
6秒前
打打应助嘎嘎楽采纳,获得10
7秒前
杨好圆完成签到,获得积分10
7秒前
8秒前
HY完成签到 ,获得积分10
8秒前
9秒前
11秒前
11秒前
PPPPP星星完成签到,获得积分10
12秒前
13秒前
13秒前
皮皮完成签到,获得积分10
13秒前
Jinnnnn完成签到 ,获得积分10
13秒前
昏睡的蟠桃应助新年快乐采纳,获得200
14秒前
14秒前
Zeng发布了新的文献求助10
14秒前
独狼发布了新的文献求助10
15秒前
深情安青应助inb采纳,获得10
15秒前
LLRO完成签到,获得积分10
16秒前
感动听蓉关注了科研通微信公众号
16秒前
16秒前
noozine发布了新的文献求助20
16秒前
17秒前
文安发布了新的文献求助10
18秒前
19秒前
狗熊也完成签到,获得积分10
20秒前
莫小乔斯发布了新的文献求助10
21秒前
21秒前
dddddd完成签到,获得积分10
23秒前
Ari发布了新的文献求助10
25秒前
gh完成签到,获得积分20
25秒前
25秒前
深情安青应助雁回采纳,获得10
26秒前
丫丫发布了新的文献求助10
26秒前
wangchangli完成签到,获得积分10
28秒前
Zeng完成签到 ,获得积分10
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789633
求助须知:如何正确求助?哪些是违规求助? 3334559
关于积分的说明 10270626
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761