A machine learning–based approach for adaptive sparse time–frequency analysis used in structural health monitoring

计算机科学 梯度下降 人工神经网络 信号处理 瞬时相位 凸优化 人工智能 算法 非线性系统 随机梯度下降算法 时频分析 机器学习 模式识别(心理学) 数学 正多边形 几何学 雷达 物理 电信 量子力学
作者
Yuequan Bao,Yibing Guo,Hui Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:19 (6): 1963-1975 被引量:24
标识
DOI:10.1177/1475921720909440
摘要

Time–frequency analysis is an essential subject in nonlinear and non-stationary signal processing in structural health monitoring, which can give a clear illustration of the variation trend of time-varying parameters. Thus, it plays a significant role in structural health monitoring, such as data analysis, and nonlinear damage detection. Adaptive sparse time–frequency analysis is a recently developed method used to estimate an instantaneous frequency, which can achieve high-resolution adaptivity by looking for the sparsest time–frequency representation of the signal within the largest possible time–frequency dictionary. However, in adaptive sparse time–frequency analysis, non-convex least-square optimization is the most important and difficult part of the algorithm; therefore, in this research the powerful optimization capabilities of machine learning were employed to solve the non-convex least-square optimization and achieve the accurate estimation of the instantaneous frequency. First, the adaptive sparse time–frequency analysis was formalized into a machine-learning task. Then, a four-layer neural network was designed, the first layer of which was used for training the coefficients of the envelope of each basic functions in a linear space. The next two merge layers were used to solve the complex calculation in a neural network. Finally, the real and imaginary parts of the reconstructed signal were the outputs of the output layer. The optimal weights in this designed neural network were trained and optimized by comparing the output reconstructed signal with the target signal, and a stochastic gradient descent optimizer was used to update the weights of the network. Finally, the numerical examples and experimental examples of a cable model were employed to illustrate the ability of the proposed method. The results show that the proposed method which is called neural network–adaptive sparse time–frequency analysis can give accurate identification of the instantaneous frequency, and it has a better robustness to initial values when compared with adaptive sparse time–frequency analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz完成签到,获得积分10
1秒前
1秒前
blue2021发布了新的文献求助10
2秒前
迷路书易发布了新的文献求助10
2秒前
iccce发布了新的文献求助10
2秒前
Lucifer完成签到,获得积分10
2秒前
李爱国应助mia采纳,获得10
2秒前
ZzZz完成签到,获得积分10
3秒前
护理123完成签到,获得积分10
3秒前
大气代灵发布了新的文献求助30
3秒前
跳跃盼波完成签到,获得积分10
3秒前
QiiiMengfan完成签到,获得积分10
4秒前
直率的元菱完成签到,获得积分10
4秒前
4秒前
Jess完成签到,获得积分10
4秒前
Luchy完成签到 ,获得积分10
5秒前
胖Q完成签到 ,获得积分20
5秒前
陨yue完成签到 ,获得积分10
5秒前
研友_nPPERn完成签到,获得积分10
5秒前
Q学发布了新的文献求助20
6秒前
画凌烟发布了新的文献求助10
6秒前
啊撒网大大e完成签到,获得积分10
7秒前
司空剑封完成签到,获得积分10
7秒前
lily完成签到,获得积分10
7秒前
香蕉觅云应助waNLKVN采纳,获得10
8秒前
情怀应助务实灵凡采纳,获得10
8秒前
赘婿应助popo6150采纳,获得10
9秒前
9秒前
haorui完成签到,获得积分10
9秒前
10秒前
陈开心完成签到,获得积分10
10秒前
huaming完成签到,获得积分10
10秒前
10秒前
orixero应助研友_n0kqxL采纳,获得30
11秒前
Starry完成签到,获得积分10
11秒前
11秒前
笨笨小刺猬完成签到,获得积分10
12秒前
青鸾完成签到,获得积分10
12秒前
12秒前
岁锦完成签到,获得积分20
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
A simple method for reusing western blots on PVDF membranes 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3924643
求助须知:如何正确求助?哪些是违规求助? 3469385
关于积分的说明 10957319
捐赠科研通 3198728
什么是DOI,文献DOI怎么找? 1767287
邀请新用户注册赠送积分活动 856769
科研通“疑难数据库(出版商)”最低求助积分说明 795632