A machine learning–based approach for adaptive sparse time–frequency analysis used in structural health monitoring

计算机科学 梯度下降 人工神经网络 信号处理 瞬时相位 凸优化 人工智能 算法 非线性系统 随机梯度下降算法 时频分析 机器学习 模式识别(心理学) 数学 正多边形 几何学 雷达 物理 电信 量子力学
作者
Yuequan Bao,Yibing Guo,Hui Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:19 (6): 1963-1975 被引量:32
标识
DOI:10.1177/1475921720909440
摘要

Time–frequency analysis is an essential subject in nonlinear and non-stationary signal processing in structural health monitoring, which can give a clear illustration of the variation trend of time-varying parameters. Thus, it plays a significant role in structural health monitoring, such as data analysis, and nonlinear damage detection. Adaptive sparse time–frequency analysis is a recently developed method used to estimate an instantaneous frequency, which can achieve high-resolution adaptivity by looking for the sparsest time–frequency representation of the signal within the largest possible time–frequency dictionary. However, in adaptive sparse time–frequency analysis, non-convex least-square optimization is the most important and difficult part of the algorithm; therefore, in this research the powerful optimization capabilities of machine learning were employed to solve the non-convex least-square optimization and achieve the accurate estimation of the instantaneous frequency. First, the adaptive sparse time–frequency analysis was formalized into a machine-learning task. Then, a four-layer neural network was designed, the first layer of which was used for training the coefficients of the envelope of each basic functions in a linear space. The next two merge layers were used to solve the complex calculation in a neural network. Finally, the real and imaginary parts of the reconstructed signal were the outputs of the output layer. The optimal weights in this designed neural network were trained and optimized by comparing the output reconstructed signal with the target signal, and a stochastic gradient descent optimizer was used to update the weights of the network. Finally, the numerical examples and experimental examples of a cable model were employed to illustrate the ability of the proposed method. The results show that the proposed method which is called neural network–adaptive sparse time–frequency analysis can give accurate identification of the instantaneous frequency, and it has a better robustness to initial values when compared with adaptive sparse time–frequency analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助sunoopp采纳,获得10
1秒前
1秒前
2秒前
2秒前
善学以致用应助小王子采纳,获得10
2秒前
yznfly应助科研通管家采纳,获得20
2秒前
yznfly应助科研通管家采纳,获得20
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
英姑应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
yznfly应助科研通管家采纳,获得50
3秒前
yznfly应助科研通管家采纳,获得50
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
3秒前
orixero应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
LINHY应助科研通管家采纳,获得30
3秒前
xuxuwang1完成签到,获得积分10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
LINHY应助科研通管家采纳,获得30
3秒前
MIMOSA发布了新的文献求助10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737686
求助须知:如何正确求助?哪些是违规求助? 5373939
关于积分的说明 15336077
捐赠科研通 4881050
什么是DOI,文献DOI怎么找? 2623314
邀请新用户注册赠送积分活动 1572041
关于科研通互助平台的介绍 1528887