Detection of coronary artery disease using multi-modal feature fusion and hybrid feature selection

计算机辅助设计 特征选择 特征(语言学) 模式识别(心理学) 情态动词 支持向量机 人工智能 计算机科学 心音图 特征提取 工程类 语言学 哲学 化学 工程制图 高分子化学
作者
Huan Zhang,Xinpei Wang,Changchun Liu,Yuanyuan Liu,Peng Li,Lianke Yao,Han Li,Jikuo Wang,Yu Jiao
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:41 (11): 115007-115007 被引量:25
标识
DOI:10.1088/1361-6579/abc323
摘要

Abstract Objective : Coronary artery disease (CAD) is a common fatal disease. At present, an accurate method to screen CAD is urgently needed. This study aims to provide optimal detection models for suspected CAD detection according to the differences in medical conditions, so as to assist physicians to make accurate judgments on suspected CAD patients. Approach : Electrocardiogram (ECG) and phonocardiogram (PCG) signals of 32 CAD patients and 30 patients with chest pain and normal coronary angiograms (CPNCA) were simultaneously collected for this paper. For each subject, the ECG and PCG multi-domain features were extracted, and the results of Holter monitoring, echocardiography (ECHO), and biomarker levels (BIO) were obtained to construct a multi-modal feature set. Then, a hybrid feature selection (HFS) method was developed using mutual information, recursive feature elimination, random forest, and weight of support vector machine to obtain the optimal feature subset. A support vector machine with nested cross-validation was used for classification. Main results : Results showed that the Holter model achieved the best performance as a single-modal feature model with an accuracy of 82.67%. In terms of multi-modal feature models, PCG-Holter, PCG-Holter-ECHO, PCG-Holter-ECHO-BIO, and ECG-PCG-Holter-ECHO-BIO were the optimal bimodal, three-modal, four-modal, and five-modal models, with accuracies of 90.38%, 91.92%, 95.25%, and 96.67%, respectively. Among them, the ECG-PCG-Holter-ECHO-BIO model, which was constructed by combining ECG and PCG signals features with Holter, ECHO, and BIO examination results, achieved the best classification results with an average accuracy, sensitivity, specificity, and F1-measure of 96.67%, 96.67%, 96.67%, and 96.64%, respectively. Significance : The study indicated that multi-modal feature fusion and HFS can obtain more effective information for CAD detection and provide a reference for physicians to diagnose CAD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路人完成签到,获得积分0
刚刚
genova完成签到,获得积分10
1秒前
00完成签到 ,获得积分10
2秒前
超级幻梅发布了新的文献求助10
2秒前
烽烽烽完成签到,获得积分10
3秒前
六叶草完成签到,获得积分10
4秒前
yqhide完成签到,获得积分10
4秒前
慕容博完成签到 ,获得积分10
5秒前
Rubby应助椰子汁采纳,获得10
7秒前
LW完成签到,获得积分10
7秒前
缘分完成签到,获得积分0
11秒前
DrSong完成签到,获得积分10
12秒前
大模型应助超级幻梅采纳,获得10
14秒前
大意的晓亦完成签到 ,获得积分10
14秒前
15秒前
汉堡包应助研友rainbow采纳,获得10
15秒前
顾勇完成签到,获得积分0
17秒前
AN完成签到,获得积分10
17秒前
小叮当完成签到,获得积分10
17秒前
lxy应助小叮当采纳,获得20
20秒前
张牧之完成签到 ,获得积分10
21秒前
qin完成签到,获得积分10
21秒前
zyw完成签到 ,获得积分10
21秒前
超级幻梅完成签到,获得积分10
23秒前
24秒前
椰子汁完成签到,获得积分10
25秒前
Ted完成签到,获得积分10
26秒前
27秒前
小库里2025完成签到 ,获得积分10
27秒前
小虫虫完成签到,获得积分10
27秒前
功不唐捐完成签到,获得积分10
28秒前
zhangqhhh完成签到,获得积分10
28秒前
马桶盖盖子完成签到 ,获得积分10
28秒前
liaoyoujiao发布了新的文献求助20
29秒前
白日幻想家完成签到 ,获得积分10
29秒前
薛乎虚完成签到 ,获得积分10
30秒前
念之完成签到 ,获得积分10
31秒前
在九月完成签到 ,获得积分10
32秒前
yjwang完成签到,获得积分10
32秒前
微雨若,,完成签到 ,获得积分10
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4198125
求助须知:如何正确求助?哪些是违规求助? 3733590
关于积分的说明 11755273
捐赠科研通 3406925
什么是DOI,文献DOI怎么找? 1869425
邀请新用户注册赠送积分活动 925358
科研通“疑难数据库(出版商)”最低求助积分说明 835846