亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Surface electromyography signal denoising via EEMD and improved wavelet thresholds

小波 降噪 人工智能 希尔伯特-黄变换 模式识别(心理学) 计算机科学 信号(编程语言) 噪音(视频) 语音识别 小波变换 数学 白噪声 统计 图像(数学) 程序设计语言
作者
Ziyang Sun,Xugang Xi,Changmin Yuan,Yong Yang,Xian Hua
出处
期刊:Mathematical Biosciences and Engineering [Arizona State University]
卷期号:17 (6): 6945-6962 被引量:47
标识
DOI:10.3934/mbe.2020359
摘要

The acquisition of good surface electromyography (sEMG) is an important prerequisite for correct and timely control of prosthetic limb movements. sEMG is nonlinear, nonstationary, and vulnerable against noise and a new sEMG denoising method using ensemble empirical mode decomposition (EEMD) and wavelet threshold is hence proposed to remove the random noise from the sEMG signal. With this method, the noised sEMG signal is first decomposed into several intrinsic mode functions (IMFs) by EEMD. The first IMF is mostly noise, coupled with a small useful component which is extracted using a wavelet transform based method by defining a peak-to-sum ratio and a noise-independent extracting threshold function. Other IMFs are processed using an improved wavelet threshold denoising method, where a noise variance estimation algorithm and an improved wavelet threshold function are combined. Key to the threshold denoising method, a threshold function is used to retain the required wavelet coefficients. Our denoising algorithm is tested for different sEMG signals produced by different muscles and motions. Experimental results show that the proposed new method performs better than other methods including the conventional wavelet threshold method and the EMD method, which guaranteed its usability in prosthetic limb control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Singularity应助jiao采纳,获得20
6秒前
12秒前
zhongu应助昌莆采纳,获得10
15秒前
zlx完成签到 ,获得积分10
21秒前
23秒前
23秒前
27秒前
27秒前
28秒前
冬嘉发布了新的文献求助10
28秒前
kukudou2发布了新的文献求助10
30秒前
32秒前
33秒前
lina完成签到 ,获得积分10
34秒前
HJJHJH发布了新的文献求助10
39秒前
kukudou2完成签到,获得积分20
41秒前
41秒前
42秒前
典雅问寒完成签到,获得积分0
45秒前
哈哈环完成签到 ,获得积分10
45秒前
香蕉觅云应助dp采纳,获得10
46秒前
Xuayib完成签到 ,获得积分10
48秒前
yyds举报体贴的青烟求助涉嫌违规
49秒前
隐形曼青应助HJJHJH采纳,获得10
52秒前
刘忙完成签到,获得积分10
53秒前
55秒前
传奇3应助TT采纳,获得10
58秒前
自然听兰完成签到 ,获得积分10
59秒前
思源应助科研通管家采纳,获得10
1分钟前
1分钟前
hayek发布了新的文献求助200
1分钟前
1分钟前
邱桥伶发布了新的文献求助10
1分钟前
1分钟前
小羊发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Benz完成签到,获得积分10
1分钟前
Benz发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946157
求助须知:如何正确求助?哪些是违规求助? 3490962
关于积分的说明 11058529
捐赠科研通 3221944
什么是DOI,文献DOI怎么找? 1780696
邀请新用户注册赠送积分活动 865774
科研通“疑难数据库(出版商)”最低求助积分说明 800061