Toward data anomaly detection for automated structural health monitoring: Exploiting generative adversarial nets and autoencoders

异常检测 计算机科学 结构健康监测 人工智能 无监督学习 过程(计算) 机器学习 数据挖掘 工程类 结构工程 操作系统
作者
Jianxiao Mao,Hao Wang,Billie F. Spencer
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:20 (4): 1609-1626 被引量:156
标识
DOI:10.1177/1475921720924601
摘要

Damage detection is one of the most important tasks for structural health monitoring of civil infrastructure. Before a damage detection algorithm can be applied, the integrity of the data must be ensured; otherwise results may be misleading or incorrect. Indeed, sensor system malfunction, which results in anomalous data (often called faulty data), is a serious problem, as the sensors usually must operate in extremely harsh environments. Identifying and eliminating anomalies in the data is crucial to ensuring that reliable monitoring results can be achieved. Because of the vast amounts of data typically collected by a structural health monitoring system, manual removal of the anomalous data is prohibitive. Machine learning methods have the potential to automate the process of data anomaly detection. Although supervised methods have been proven to be effective for detecting data anomalies, two unresolved challenges reduce the accuracy of anomaly detection: (1) the class imbalance and (2) incompleteness of anomalous patterns of training dataset. Unsupervised methods have the potential to address these challenges, but improvements are required to deal with vast amounts of monitoring data. In this article, the generative adversarial networks are combined with a widely applied unsupervised method, that is, autoencoders, to improve the performance of existing unsupervised learning methods. In addition, the time-series data are transformed to Gramian Angular Field images so that advanced computer vision methods can be included in the network. Two structural health monitoring datasets from a full-scale bridge, including examples of anomalous data caused by sensor system malfunctions, are utilized to validate the proposed methodology. Results show that the proposed methodology can successfully identify data anomalies with good accuracy and robustness, hence can overcome one of the key difficulties in achieving automated structural health monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jiangjiang完成签到 ,获得积分10
6秒前
Baboonium完成签到,获得积分10
7秒前
11秒前
huangqian完成签到,获得积分10
11秒前
研友_ZlxBXZ完成签到,获得积分10
12秒前
四叶草完成签到 ,获得积分10
14秒前
15秒前
巴巴拉拉巴拉完成签到 ,获得积分10
18秒前
细心的语蓉完成签到,获得积分10
20秒前
miaomiao完成签到,获得积分10
21秒前
迅速的念芹完成签到 ,获得积分10
23秒前
nanfeng完成签到 ,获得积分10
24秒前
风起完成签到 ,获得积分10
25秒前
L1完成签到 ,获得积分10
26秒前
wang完成签到,获得积分10
26秒前
欢喜板凳完成签到 ,获得积分10
27秒前
希望天下0贩的0应助miaomiao采纳,获得10
28秒前
33秒前
JIAO完成签到 ,获得积分10
34秒前
35秒前
CiCi发布了新的文献求助30
40秒前
41秒前
CiCi完成签到,获得积分10
50秒前
蒋灵馨完成签到 ,获得积分10
55秒前
Zheng完成签到 ,获得积分10
59秒前
希望天下0贩的0应助Wang采纳,获得10
1分钟前
lkk完成签到,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
wyw完成签到 ,获得积分10
1分钟前
1分钟前
Raymond完成签到,获得积分10
1分钟前
数乱了梨花完成签到 ,获得积分10
1分钟前
Kitty完成签到,获得积分10
1分钟前
1分钟前
柚C美式完成签到 ,获得积分10
1分钟前
十二完成签到 ,获得积分10
1分钟前
btcat完成签到,获得积分10
1分钟前
YORLAN完成签到 ,获得积分10
1分钟前
整齐百褶裙完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792550
求助须知:如何正确求助?哪些是违规求助? 3336787
关于积分的说明 10282162
捐赠科研通 3053566
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761481