Tumor-Derived Extracellular Vesicles Breach the Intact Blood–Brain Barrier via Transcytosis

跨细胞 血脑屏障 跨细胞 体内 药物输送 内吞循环 微泡 药物输送到大脑 内吞作用 细胞生物学 脑瘤 生物 医学 生物化学 神经科学 纳米技术 病理 小RNA 中枢神经系统 细胞 材料科学 生物技术 基因
作者
Golnaz Morad,Christopher V. Carman,Elliott J. Hagedorn,Julie R. Perlin,Leonard I. Zon,Nur Mustafaoğlu,Tae‐Eun Park,Donald E. Ingber,Cassandra Daisy,Marsha A. Moses
出处
期刊:ACS Nano [American Chemical Society]
卷期号:13 (12): 13853-13865 被引量:431
标识
DOI:10.1021/acsnano.9b04397
摘要

The restrictive nature of the blood-brain barrier (BBB) creates a major challenge for brain drug delivery with current nanomedicines lacking the ability to cross the BBB. Extracellular vesicles (EVs) have been shown to contribute to the progression of a variety of brain diseases including metastatic brain cancer and have been suggested as promising therapeutics and drug delivery vehicles. However, the ability of native tumor-derived EVs to breach the BBB and the mechanism(s) involved in this process remain unknown. Here, we demonstrate that tumor-derived EVs can breach the intact BBB in vivo, and by using state-of-the-art in vitro and in vivo models of the BBB, we have identified transcytosis as the mechanism underlying this process. Moreover, high spatiotemporal resolution microscopy demonstrated that the endothelial recycling endocytic pathway is involved in this transcellular transport. We further identify and characterize the mechanism by which tumor-derived EVs circumvent the low physiologic rate of transcytosis in the BBB by decreasing the brain endothelial expression of rab7 and increasing the efficiency of their transport. These findings identify previously unknown mechanisms by which tumor-derived EVs breach an intact BBB during the course of brain metastasis and can be leveraged to guide and inform the development of drug delivery approaches to deliver therapeutic cargoes across the BBB for treatment of a variety of brain diseases including, but not limited to, brain malignancies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
飘萍过客完成签到,获得积分10
4秒前
cc完成签到,获得积分10
5秒前
ELL完成签到,获得积分10
5秒前
5秒前
8秒前
松鼠完成签到 ,获得积分10
9秒前
feizao完成签到,获得积分10
9秒前
10秒前
研友_08oErn发布了新的文献求助10
10秒前
12秒前
13秒前
巴巴爸爸发布了新的文献求助10
13秒前
ELL发布了新的文献求助10
13秒前
科研通AI5应助wuniuniu采纳,获得10
13秒前
典雅的惜萱完成签到,获得积分10
13秒前
15秒前
16秒前
17秒前
17秒前
18秒前
19秒前
lgbabe发布了新的文献求助10
20秒前
科研通AI2S应助夏天采纳,获得10
20秒前
Charon完成签到,获得积分10
21秒前
coolmmvsyou发布了新的文献求助10
22秒前
xumodehudie完成签到 ,获得积分10
22秒前
shiyu发布了新的文献求助10
23秒前
strickland发布了新的文献求助50
23秒前
观光完成签到,获得积分10
23秒前
24秒前
24秒前
星辰大海应助邹芳清采纳,获得10
26秒前
科研助手6应助lgbabe采纳,获得10
28秒前
28秒前
28秒前
甜晞发布了新的文献求助10
29秒前
29秒前
顺心不弱发布了新的文献求助10
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818646
求助须知:如何正确求助?哪些是违规求助? 3361710
关于积分的说明 10413854
捐赠科研通 3079926
什么是DOI,文献DOI怎么找? 1693653
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248