Type 2 Machine Learning: An Effective Hybrid Prediction Model for Early Type 2 Diabetes Detection

随机森林 聚类分析 计算机科学 标杆管理 机器学习 人工智能 k均值聚类 预测建模 鉴定(生物学) 数据挖掘 植物 营销 业务 生物
作者
Saleh Albahli
出处
期刊:Journal of Medical Imaging and Health Informatics [American Scientific Publishers]
卷期号:10 (5): 1069-1075 被引量:20
标识
DOI:10.1166/jmihi.2020.3000
摘要

Importance: Diabetes is a chronic disease that can cause long term damage to various parts of the body. To prevent diabetic complications, different attempts integrating machine learning with medicine have been made for building models to predict whether a patient has diabetes or not, but predicting this disease still has room for improvement. Hybrid prediction model presents a novel method and mostly achieve a much better optimal outcome than single classical machine learning algorithms. Objective: To develop a high accuracy model for different onsets of type 2 diabetes prediction. In this way, the integration between clustering and classification techniques can be improved to help detecting diabetes at an earlier stage without deleting observations with missing values and also decrease insignificant features to get the most related features during data collection. Methods: We implement a noise reduction based technique using Kmeans clustering followed by running the Random forest and XGBoost classifiers to extract the unknown hidden features of the dataset and for more accurate results. Results: Prediction accuracy can be observed by benchmarking our model against up-to-date predictive models and common classification algorithms. With an accuracy of 97.53% by 10 fold cross validation, our T2ML model reaches a better accuracy compared with other experiments reported by other researchers in the literature and over various conventional classification algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
人衣完成签到,获得积分10
1秒前
2秒前
隐形曼青应助雨落瑾年采纳,获得10
3秒前
干净山柳发布了新的文献求助30
3秒前
可靠豆芽发布了新的文献求助10
4秒前
爆米花应助Benhnhk21采纳,获得10
4秒前
6秒前
SY发布了新的文献求助50
6秒前
林生关注了科研通微信公众号
7秒前
8秒前
10秒前
绮菱完成签到,获得积分10
11秒前
11秒前
明芷蝶完成签到,获得积分10
12秒前
13秒前
乖拉完成签到,获得积分10
13秒前
斯文败类应助wang123采纳,获得10
14秒前
15秒前
雨落瑾年发布了新的文献求助10
15秒前
kewu发布了新的文献求助10
16秒前
剑指东方是为谁应助炙心采纳,获得10
17秒前
zz的奇妙冒险完成签到,获得积分10
18秒前
18秒前
隐形曼青应助JZ133采纳,获得10
18秒前
大模型应助跳跃一手采纳,获得10
20秒前
20秒前
bkagyin应助山君卓采纳,获得10
22秒前
Benhnhk21发布了新的文献求助10
23秒前
所所应助xx采纳,获得10
24秒前
26秒前
26秒前
kewu完成签到,获得积分10
27秒前
28秒前
zl完成签到,获得积分10
28秒前
Olivia完成签到,获得积分10
28秒前
FashionBoy应助科研通管家采纳,获得10
28秒前
大模型应助科研通管家采纳,获得30
28秒前
SciGPT应助科研通管家采纳,获得10
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803560
求助须知:如何正确求助?哪些是违规求助? 3348491
关于积分的说明 10338705
捐赠科研通 3064604
什么是DOI,文献DOI怎么找? 1682637
邀请新用户注册赠送积分活动 808381
科研通“疑难数据库(出版商)”最低求助积分说明 764038