辅助
灵敏度(控制系统)
参数统计
等几何分析
非线性系统
人工神经网络
计算机科学
关系(数据库)
算法
应用数学
数学
数学优化
结构工程
有限元法
材料科学
人工智能
工程类
数据挖掘
电子工程
物理
统计
复合材料
量子力学
作者
Yingjun Wang,Zhongyuan Liao,Shengyu Shi,Zhen-Pei Wang,Leong Hien Poh
标识
DOI:10.32604/cmes.2020.08680
摘要
Focusing on the structural optimization of auxetic materials using data-driven methods, a back-propagation neural network (BPNN) based design framework is developed for petal-shaped auxetics using isogeometric analysis. Adopting a NURBS-based parametric modelling scheme with a small number of design variables, the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method, and demonstrated in this work to give high accuracy and efficiency. Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis, in contrast to the generally complex procedures of typical shape and size sensitivity approaches.
科研通智能强力驱动
Strongly Powered by AbleSci AI