Towards Automatic Segmentation and Recognition of Multiple Precast Concrete Elements in Outdoor Laser Scan Data

计算机科学 分割 预制混凝土 匹配(统计) 人工智能 计算机视觉 工程类 土木工程 数学 统计
作者
Jiepeng Liu,Dongsheng Li,Liang Feng,Pengkun Liu,Wenbo Wu
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:11 (11): 1383-1383 被引量:16
标识
DOI:10.3390/rs11111383
摘要

To date, to improve construction quality and efficiency and reduce environmental pollution, the use of precast concrete elements (PCEs) has become popular in civil engineering. As PCEs are manufactured in a batch manner and possess complicated shapes, traditional manual inspection methods cannot meet today’s requirements in terms of production rate of PCEs. The manual inspection of PCEs needs to be conducted one by one after the production, resulting in the excessive storage of finished PCEs in the storage yards. Therefore, many studies have proposed the use of terrestrial laser scanners (TLSs) for the quality inspection of PCEs. However, all these studies focus on the data of a single PCE or a single surface of PCE, which is acquired from a unique or predefined scanning angle. It is thus still inefficient and impractical in reality, where hundred types of PCEs with different properties may exist. Taking this cue, this study proposes to scan multiple PCEs simultaneously to improve the inspection efficiency by using TLSs. In particular, a segmentation and recognition approach is proposed to automatically extract and identify the different types of PCEs in a large amount of outdoor laser scan data. For the data segmentation, 3D data is first converted into 2D images. Image processing is then combined with radially bounded nearest neighbor graph (RBNN) algorithm to speed up the laser scan data segmentation. For the PCE recognition, based on the as-designed models of PCEs in building information modeling (BIM), the proposed method uses a coarse matching and a fine matching to recognize the type of each PCE data. To the best of our knowledge, no research work has been conducted on the automatic recognition of PCEs from a million or even ten million of the outdoor laser scan points, which contain many different types of PCEs. To verify the feasibility of the proposed method, experimental studies have been conducted on the PCE outdoor laser scan data, considering the shape, type, and amount of PCEs. In total, 22 PCEs including 12 different types are involved in this paper. Experiment results confirm the effectiveness and efficiency of the proposed approach for automatic segmentation and recognition of different PCEs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左左右右完成签到 ,获得积分10
刚刚
刚刚
987完成签到,获得积分10
2秒前
3秒前
4秒前
若水三千完成签到,获得积分10
5秒前
6秒前
欢呼的莆发布了新的文献求助10
6秒前
superzwz发布了新的文献求助10
7秒前
独特大米发布了新的文献求助10
7秒前
Sisyphus完成签到,获得积分10
8秒前
Banbor2021完成签到,获得积分10
14秒前
科研通AI5应助独特大米采纳,获得10
15秒前
18秒前
19秒前
orixero应助绝味火龙果采纳,获得10
20秒前
21秒前
无花果应助回颜轻生采纳,获得10
24秒前
应应发布了新的文献求助10
24秒前
盆盆酱发布了新的文献求助10
25秒前
25秒前
wlf完成签到,获得积分10
25秒前
huang发布了新的文献求助10
26秒前
飞乐扣发布了新的文献求助10
27秒前
superzwz完成签到 ,获得积分10
29秒前
31秒前
ぴいい发布了新的文献求助10
31秒前
无情的友容完成签到 ,获得积分10
31秒前
要文献啊完成签到 ,获得积分10
35秒前
sandwich发布了新的文献求助10
36秒前
安详宛筠发布了新的文献求助10
36秒前
STAN完成签到,获得积分10
39秒前
40秒前
Owen应助ddli采纳,获得10
41秒前
45秒前
45秒前
安详宛筠完成签到,获得积分10
46秒前
wwwzy完成签到 ,获得积分20
48秒前
51秒前
左手天下完成签到 ,获得积分10
51秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783262
求助须知:如何正确求助?哪些是违规求助? 3328579
关于积分的说明 10237185
捐赠科研通 3043691
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130