Extended Working Frequency of Ferrites by Synergistic Attenuation through a Controllable Carbothermal Route Based on Prussian Blue Shell

普鲁士蓝 材料科学 衰减 碳热反应 复合材料 壳体(结构) 纳米技术 光电子学 电极 光学 碳化物 物理化学 电化学 物理 化学
作者
Wei Liu,Juncen Liu,Zhihong Yang,Guangbin Ji
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:10 (34): 28887-28897 被引量:91
标识
DOI:10.1021/acsami.8b09682
摘要

One of the major hurdles of ferrite-based microwave absorbing materials is the limited working frequency that urgently calls for an effective modification technique. Herein, a controllable carbothermal route has been developed to ameliorate the microwave absorption performance of Fe3O4 nanospheres by using metal–organic frameworks (MOFs) shell as a carbon source with changing ramping rates. An enhanced synergistic attenuation induced by varied composition and tailored morphology is of great importance, which can be regarded as the superiority of the comprehensive (magnetic and dielectric), rather than unilateral (dielectric), modification technique. The drawbacks of dielectric modification can be concluded as the separated attenuation mechanisms at discrete frequencies, proven by the construction of the core–shell structured Fe3O4@Prussian blue composite. The advantages of magnetic modification can also be confirmed by a series of Fe-based composites with unique composition and tailored structure derived from the Fe3O4@Prussian blue composite at a distinct heating rate. Further, the superiority can be summarized as the rearrangement of magnetic loss by exceeding the Snoek limit and the reinforcement of dielectric loss by enhancing the electrical conductivity and introducing multiple polarization processes. Consequently, the sample obtained at 10 °C min–1, which contains Fe and Fe3O4, shows an extended working frequency of 14.05 GHz, with a thickness less than 5 mm and a high reflection loss value of −48.04 dB at 1.55 mm. This work not only offers a novel carbothermal route based on MOFs coating to prepare desired magnetic composites, but also acquires deeper insights of the comprehensive modification technique, which may pave the way for designing high-performance electromagnetic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
发嗲的雨筠完成签到,获得积分10
2秒前
呵呵完成签到,获得积分10
3秒前
3秒前
欣喜书蕾完成签到,获得积分10
4秒前
悦果完成签到 ,获得积分10
4秒前
5秒前
MiriamYu完成签到,获得积分10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
CTCG应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
916应助科研通管家采纳,获得20
9秒前
9秒前
cdercder应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
916应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
妍宝贝完成签到 ,获得积分10
10秒前
蔡6705发布了新的文献求助10
11秒前
拼搏的听寒完成签到,获得积分10
11秒前
小鸟芋圆露露完成签到 ,获得积分10
12秒前
15秒前
15秒前
王旭军给王旭军的求助进行了留言
18秒前
冷静剑成发布了新的文献求助10
19秒前
科研小白完成签到,获得积分10
21秒前
瘦瘦的迎梦完成签到 ,获得积分20
23秒前
脑洞疼应助诸忆雪采纳,获得10
24秒前
xuli-888完成签到,获得积分10
26秒前
Master完成签到 ,获得积分10
27秒前
CCC完成签到 ,获得积分10
34秒前
34秒前
mo72090完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777734
求助须知:如何正确求助?哪些是违规求助? 3323199
关于积分的说明 10213148
捐赠科研通 3038520
什么是DOI,文献DOI怎么找? 1667445
邀请新用户注册赠送积分活动 798139
科研通“疑难数据库(出版商)”最低求助积分说明 758275