Bivariate genome-wide association analyses of the broad depression phenotype combined with major depressive disorder, bipolar disorder or schizophrenia reveal eight novel genetic loci for depression

双相情感障碍 全基因组关联研究 重性抑郁障碍 精神分裂症(面向对象编程) 遗传关联 萧条(经济学) 精神科 心理学 临床心理学 遗传学 单核苷酸多态性 生物 基因 基因型 心情 宏观经济学 经济
作者
Azmeraw T. Amare,Ahmad Vaez,Yi-Hsiang Hsu,Neşe Direk,Zoha Kamali,David M. Howard,Andrew M. McIntosh,Henning Tiemeier,Ute Bültmann,Harold Snieder,Catharina A. Hartman
出处
期刊:Molecular Psychiatry [Springer Nature]
卷期号:25 (7): 1420-1429 被引量:81
标识
DOI:10.1038/s41380-018-0336-6
摘要

Although a genetic basis of depression has been well established in twin studies, identification of genome-wide significant loci has been difficult. We hypothesized that bivariate analyses of findings from a meta-analysis of genome-wide association studies (meta-GWASs) of the broad depression phenotype with those from meta-GWASs of self-reported and recurrent major depressive disorder (MDD), bipolar disorder and schizophrenia would enhance statistical power to identify novel genetic loci for depression. LD score regression analyses were first used to estimate the genetic correlations of broad depression with self-reported MDD, recurrent MDD, bipolar disorder and schizophrenia. Then, we performed four bivariate GWAS analyses. The genetic correlations (rg ± SE) of broad depression with self-reported MDD, recurrent MDD, bipolar disorder and schizophrenia were 0.79 ± 0.07, 0.24 ± 0.08, 0.53 ± 0.09 and 0.57 ± 0.05, respectively. From a total of 20 independent genome-wide significant loci, 13 loci replicated of which 8 were novel for depression. These were MUC21 for the broad depression phenotype with self-reported MDD and ZNF804A, MIR3143, PSORS1C2, STK19, SPATA31D1, RTN1 and TCF4 for the broad depression phenotype with schizophrenia. Post-GWAS functional analyses of these loci revealed their potential biological involvement in psychiatric disorders. Our results emphasize the genetic similarities among different psychiatric disorders and indicate that cross-disorder analyses may be the best way forward to accelerate gene finding for depression, or psychiatric disorders in general.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hhhhh完成签到,获得积分10
1秒前
小丸子发布了新的文献求助10
1秒前
科研通AI2S应助五十采纳,获得10
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
张兮兮发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
8秒前
张铁柱完成签到,获得积分10
9秒前
完美的紊发布了新的文献求助10
9秒前
彭于晏应助清风采纳,获得30
10秒前
Lwssss发布了新的文献求助10
10秒前
12秒前
慌慌完成签到 ,获得积分10
12秒前
怕孤单的耳机完成签到,获得积分10
13秒前
程程发布了新的文献求助10
14秒前
16秒前
help3q发布了新的文献求助10
17秒前
健壮的赛凤完成签到,获得积分10
19秒前
元锦程完成签到,获得积分10
20秒前
jessie发布了新的文献求助20
21秒前
qiao完成签到,获得积分10
21秒前
Eric发布了新的文献求助10
21秒前
科研通AI5应助张兮兮采纳,获得10
22秒前
24秒前
量子星尘发布了新的文献求助10
25秒前
该房地产个人的完成签到,获得积分10
26秒前
26秒前
852应助科研通管家采纳,获得10
28秒前
良辰应助科研通管家采纳,获得10
28秒前
良辰应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
冰魂应助科研通管家采纳,获得20
28秒前
良辰应助科研通管家采纳,获得10
28秒前
共享精神应助科研通管家采纳,获得10
29秒前
李健应助科研通管家采纳,获得10
29秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864925
求助须知:如何正确求助?哪些是违规求助? 3407348
关于积分的说明 10653885
捐赠科研通 3131397
什么是DOI,文献DOI怎么找? 1726966
邀请新用户注册赠送积分活动 832108
科研通“疑难数据库(出版商)”最低求助积分说明 780163