Remote Sensing Image Change Detection with Transformers

变压器 人工智能 多光谱图像
作者
Hao Chen,Zipeng Qi,Zhenwei Shi
出处
期刊:arXiv: Computer Vision and Pattern Recognition 被引量:5
标识
DOI:10.1109/tgrs.2021.3095166
摘要

Modern change detection (CD) has achieved remarkable success by the powerful discriminative ability of deep convolutions. However, high-resolution remote sensing CD remains challenging due to the complexity of objects in the scene. Objects with the same semantic concept may show distinct spectral characteristics at different times and spatial locations. Most recent CD pipelines using pure convolutions are still struggling to relate long-range concepts in space-time. Non-local self-attention approaches show promising performance via modeling dense relations among pixels, yet are computationally inefficient. Here, we propose a bitemporal image transformer (BIT) to efficiently and effectively model contexts within the spatial-temporal domain. Our intuition is that the high-level concepts of the change of interest can be represented by a few visual words, i.e., semantic tokens. To achieve this, we express the bitemporal image into a few tokens, and use a transformer encoder to model contexts in the compact token-based space-time. The learned context-rich tokens are then feedback to the pixel-space for refining the original features via a transformer decoder. We incorporate BIT in a deep feature differencing-based CD framework. Extensive experiments on three CD datasets demonstrate the effectiveness and efficiency of the proposed method. Notably, our BIT-based model significantly outperforms the purely convolutional baseline using only 3 times lower computational costs and model parameters. Based on a naive backbone (ResNet18) without sophisticated structures (e.g., FPN, UNet), our model surpasses several state-of-the-art CD methods, including better than four recent attention-based methods in terms of efficiency and accuracy. Our code is available at this https URL\_CD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柳觅夏发布了新的文献求助10
1秒前
colorful发布了新的文献求助10
1秒前
爆米花应助侯谋采纳,获得10
2秒前
三点水完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
今后应助科研通管家采纳,获得10
7秒前
7秒前
伶俐的思枫完成签到,获得积分10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
Jaikaran应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
8秒前
安安发布了新的文献求助10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
Jaikaran应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得30
9秒前
9秒前
焦晓媛完成签到,获得积分10
9秒前
feng发布了新的文献求助20
9秒前
虚幻蹇发布了新的文献求助10
10秒前
grace完成签到 ,获得积分10
12秒前
14秒前
geopotter完成签到,获得积分10
16秒前
16秒前
fafentuqiang完成签到,获得积分10
16秒前
colorful完成签到,获得积分10
17秒前
17秒前
开朗寻凝发布了新的文献求助10
19秒前
Ava应助专注一行青文采纳,获得10
19秒前
学习使我快乐完成签到 ,获得积分10
19秒前
韩较瘦完成签到,获得积分0
20秒前
20秒前
Raymond完成签到 ,获得积分10
22秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 510
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4103175
求助须知:如何正确求助?哪些是违规求助? 3640775
关于积分的说明 11537614
捐赠科研通 3349652
什么是DOI,文献DOI怎么找? 1840461
邀请新用户注册赠送积分活动 907512
科研通“疑难数据库(出版商)”最低求助积分说明 824598