部分
化学
甲基丙烯酸酯
单体
酰胺
原子转移自由基聚合
胺气处理
高分子化学
聚合物
儿茶酚
有机化学
作者
Nathanael Hsueh,Christina L. L. Chai
出处
期刊:Langmuir
[American Chemical Society]
日期:2021-07-16
卷期号:37 (29): 8811-8820
被引量:7
标识
DOI:10.1021/acs.langmuir.1c01143
摘要
The use of α-bromoisobutyryl-functionalized polydopamine (PDA), derived from an in situ mixture with dopamine (DA) and α-bromoisobutyryl bromide, enables surface-initiated atom transfer radical polymerization (SI-ATRP) of a broad range of methacrylate monomers for surface functionalization. Although the putative intermediate 2-bromo-N-(3,4-dihydroxyphenethyl)-2-methylpropanamide 1 has been proposed to account for the SI-ATRP activity of α-bromoisobutyryl-functionalized PDA, there has not been a systematic investigation on the efficacy of other catechol-derived 2-bromoisobutyryl derivatives for SI-ATRP. In this work, a number of catechol-derived ATRP initiators containing the 2-bromoisobutyryl moiety were designed and synthesized, in an effort to investigate the effect of changes in structure on initiator immobilization, and subsequent ATRP performance. The change in the length of the linker unit bearing the 2-bromoisobutyryl moiety, the introduction of a free amine group, or the replacement of the amide with an ester were found to have profound effects on the ability of the molecule to deposit ATRP-initiator-modified PDA coatings, as well as the subsequent SI-ATRP performance. Among the ATRP initiators synthesized, 5-(2-aminoethyl)-2,3-dihydroxyphenethyl 2-bromo-2-methylpropanoate hydrobromide 4·HBr was most efficiently incorporated into ATRP-initiator-modified PDA coatings and also the best at effecting SI-ATRP with 2-hydroxyethyl methacrylate; the high performance of this initiator is likely due to the presence of a free amine and an appropriately long methylene linker unit to the 2-bromoisobutyryl moiety. This methodology was found to be suitable for the functionalization of a range of organic and inorganic surfaces, for the fabrication of high-value surface-grafted polymer brush coatings for various applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI