亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recognition of rice leaf diseases and wheat leaf diseases based on multi-task deep transfer learning

学习迁移 水稻 深度学习 任务(项目管理) 人工智能 计算机科学 多样性(控制论) 农学 机器学习 农业工程 生物 工程类 系统工程
作者
Zhencun Jiang,Zhengxin Dong,Wenping Jiang,Yuze Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:186: 106184-106184 被引量:208
标识
DOI:10.1016/j.compag.2021.106184
摘要

More than two-thirds of human in the world view rice or wheat as their diet, rice and wheat are grown in some regions of China and other countries in Asian. However, a variety of diseases can affect the growth of rice and wheat, reducing their harvest and even cause famine in some areas. Diseases in leaves, as a kind of diseases, have negative impacts on plants. Under this background, quickly and accurately recognition method is necessary to take in practice and educe the loss. In order to solve this problem, this article aims at three kinds of rice leaf diseases and two kinds of wheat leaf diseases, collects 40 images of each leaf diseases and enhances them. And aims to improve the Visual Geometry Group Network-16(VGG16) model based on the idea of multi-task learning and then use the pre-training model on ImageNET for transfer learning and alternating learning. The accuracy of such model is 97.22% for rice leaf diseases and 98.75% for wheat leaf diseases. Through comparative experiments, it is proved that the effects of this method are better than single-task model, reuse-model method in transfer learning, resnet50 model and densenet121 model. The experimental results show that the improved VGG16 model and multi-task transfer learning method proposed in this article can recognize rice leaf diseases and wheat leaf diseases at the same time, which provides a reliable method for recognizing leaf diseases of many plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
flyinthesky完成签到,获得积分10
5秒前
5秒前
wop111应助读书的时候采纳,获得30
13秒前
yang完成签到,获得积分20
17秒前
芒果完成签到,获得积分10
20秒前
21秒前
张晓祁完成签到,获得积分10
25秒前
32秒前
34秒前
yueying完成签到,获得积分10
36秒前
chen发布了新的文献求助30
38秒前
38秒前
lsl完成签到 ,获得积分10
40秒前
44秒前
Akim应助读书的时候采纳,获得10
49秒前
杨自强完成签到,获得积分10
50秒前
jj完成签到,获得积分10
50秒前
CipherSage应助伊力扎提采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
谨慎文龙发布了新的文献求助50
1分钟前
伊力扎提发布了新的文献求助10
1分钟前
1分钟前
大模型应助图图采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
NexusExplorer应助纯真的初之采纳,获得10
1分钟前
1分钟前
危机的阁应助Baylin采纳,获得50
1分钟前
充电宝应助灵巧延恶采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5687494
求助须知:如何正确求助?哪些是违规求助? 5058024
关于积分的说明 15192969
捐赠科研通 4846124
什么是DOI,文献DOI怎么找? 2598625
邀请新用户注册赠送积分活动 1550696
关于科研通互助平台的介绍 1509128