Message-Aware Graph Attention Networks for Large-Scale Multi-Robot Path Planning

计算机科学 水准点(测量) 机器人 分布式计算 钥匙(锁) 运动规划 图形 人工智能 理论计算机科学 机器学习 计算机安全 大地测量学 地理
作者
Qingbiao Li,Weizhe Lin,Zhe Liu,Amanda Prorok
出处
期刊:IEEE robotics and automation letters 卷期号:6 (3): 5533-5540 被引量:104
标识
DOI:10.1109/lra.2021.3077863
摘要

The domains of transport and logistics are increasingly relying on autonomous mobile robots for the handling and distribution of passengers or resources. At large system scales, finding decentralized path planning and coordination solutions is key to efficient system performance. Recently, Graph Neural Networks (GNNs) have become popular due to their ability to learn communication policies in decentralized multi-agent systems. Yet, vanilla GNNs rely on simplistic message aggregation mechanisms that prevent agents from prioritizing important information. To tackle this challenge, in this letter, we extend our previous work that utilizes GNNs in multi-agent path planning by incorporating a novel mechanism to allow for message-dependent attention. Our Message-Aware Graph Attention neTwork (MAGAT) is based on a key-query-like mechanism that determines the relative importance of features in the messages received from various neighboring robots. We show that MAGAT is able to achieve a performance close to that of a coupled centralized expert algorithm. Further, ablation studies and comparisons to several benchmark models show that our attention mechanism is very effective across different robot densities and performs stably in different constraints in communication bandwidth. Experiments demonstrate that our model is able to generalize well in previously unseen problem instances, and that it achieves a 47% improvement over the benchmark success rate, even in very large-scale instances that are ×100 larger than the training instances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助满天星采纳,获得10
刚刚
mmm完成签到,获得积分20
1秒前
3秒前
小蘑菇应助abc采纳,获得10
3秒前
3秒前
Ai_niyou发布了新的文献求助50
4秒前
5秒前
Lucas应助rationality采纳,获得10
6秒前
6秒前
7秒前
完美世界应助bzmuzxy采纳,获得10
8秒前
脑洞疼应助hyhyhyhy采纳,获得10
9秒前
文献发布了新的文献求助10
9秒前
9秒前
爆米花应助玩命的坤采纳,获得10
9秒前
10秒前
优秀含羞草完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
xiezlin3发布了新的文献求助10
11秒前
JL发布了新的文献求助10
11秒前
柚子完成签到,获得积分10
12秒前
johnzealot发布了新的文献求助10
13秒前
我是老大应助曾经青亦采纳,获得10
13秒前
Husile发布了新的文献求助30
14秒前
14秒前
BIGDEEK发布了新的文献求助10
14秒前
星辰大海应助故意的妙菡采纳,获得10
15秒前
虚幻锦程发布了新的文献求助10
16秒前
drsunofoph123发布了新的文献求助10
16秒前
面壁思过发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
知识付费完成签到,获得积分10
19秒前
科研通AI5应助小欣采纳,获得10
20秒前
婧婧完成签到,获得积分10
21秒前
huangluling发布了新的文献求助10
21秒前
HH发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4751416
求助须知:如何正确求助?哪些是违规求助? 4096942
关于积分的说明 12675670
捐赠科研通 3809520
什么是DOI,文献DOI怎么找? 2103259
邀请新用户注册赠送积分活动 1128428
关于科研通互助平台的介绍 1005349