Triplet-Graph Reasoning Network for Few-Shot Metal Generic Surface Defect Segmentation

分割 曲面(拓扑) 计算机科学 人工智能 编码器 图形 计算机视觉 模式识别(心理学) 理论计算机科学 数学 几何学 操作系统
作者
Yanqi Bao,Kechen Song,Jie Liu,Yanyan Wang,Yunhui Yan,Han Yu,Xingjie Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-11 被引量:177
标识
DOI:10.1109/tim.2021.3083561
摘要

Metal surface defect segmentation can play an important role in dealing with the issue of quality control during the production and manufacturing stages. There are still two major challenges in industrial applications. One is the case that the number of metal surface defect samples is severely insufficient, and the other is that the most existing algorithms can only be used for specific surface defects and it is difficult to generalize to other metal surfaces. In this work, a theory of few-shot metal generic surface defect segmentation is introduced to solve these challenges. Simultaneously, the Triplet-Graph Reasoning Network (TGRNet) and a novel dataset Surface Defects- 4 i are proposed to achieve this theory. In our TGRNet, the surface defect triplet (including triplet encoder and trip loss) is proposed and is used to segment background and defect area, respectively. Through triplet, the few-shot metal surface defect segmentation problem is transformed into few-shot semantic segmentation problem of defect area and background area. For few-shot semantic segmentation, we propose a method of multi-graph reasoning to explore the similarity relationship between different images. And to improve segmentation performance in the industrial scene, an adaptive auxiliary prediction module is proposed. For Surface Defects- 4 i , it includes multiple categories of metal surface defect images to verify the generalization performance of our TGRNet and adds the nonmetal categories (leather and tile) as extensions. Through extensive comparative experiments and ablation experiments, it is proved that our architecture can achieve state-of-the-art results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
言言言言发布了新的文献求助10
刚刚
2秒前
润润润完成签到 ,获得积分10
4秒前
5秒前
5秒前
白菜发布了新的文献求助10
7秒前
8秒前
lizhiqian2024发布了新的文献求助10
8秒前
9秒前
ry发布了新的文献求助10
11秒前
11秒前
14秒前
14秒前
科研通AI5应助TszPok采纳,获得10
15秒前
17秒前
18秒前
QL发布了新的文献求助10
19秒前
20秒前
打打应助不安的煜城采纳,获得10
21秒前
huangyifan发布了新的文献求助10
21秒前
自然的如南完成签到,获得积分10
21秒前
华仔应助猫毛采纳,获得10
21秒前
21秒前
22秒前
24秒前
25秒前
Niko发布了新的文献求助10
25秒前
小马甲应助瀚森采纳,获得10
26秒前
27秒前
29秒前
42完成签到,获得积分10
29秒前
小铃铛发布了新的文献求助10
29秒前
科研通AI5应助神经蛙采纳,获得10
30秒前
随安完成签到,获得积分20
30秒前
31秒前
CodeCraft应助明理的南风采纳,获得10
32秒前
sciDoge应助hope采纳,获得10
33秒前
33秒前
33秒前
言言言言完成签到,获得积分20
34秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351563
关于积分的说明 10354783
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684500
邀请新用户注册赠送积分活动 809737
科研通“疑难数据库(出版商)”最低求助积分说明 765635