Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer: a randomized controlled trial

医学 食管胃十二指肠镜检查 随机对照试验 内窥镜检查 癌症 结肠镜检查 内科学 胃肠病学 外科 结直肠癌
作者
Lianlian Wu,Xinqi He,Mei Liu,Huaping Xie,Ping An,Jun Zhang,Heng Zhang,Yaowei Ai,Qiao-Yun Tong,Mingwen Guo,Manling Huang,Cun-Jin Ge,Zhi Yang,Jingping Yuan,Jun Liu,Wei Zhou,Xiaoda Jiang,Xu Huang,Ganggang Mu,Xinyue Wan,Yanxia Li,Hongguang Wang,Yonggui Wang,Hongfeng Zhang,Di Chen,Dexin Gong,Jing Wang,Li Huang,Jia Li,Liwen Yao,Yijie Zhu,Honggang Yu
出处
期刊:Endoscopy [Thieme Medical Publishers (Germany)]
卷期号:53 (12): 1199-1207 被引量:104
标识
DOI:10.1055/a-1350-5583
摘要

Abstract Background Esophagogastroduodenoscopy (EGD) is a prerequisite for detecting upper gastrointestinal lesions especially early gastric cancer (EGC). An artificial intelligence system has been shown to monitor blind spots during EGD. In this study, we updated the system (ENDOANGEL), verified its effectiveness in improving endoscopy quality, and pretested its performance in detecting EGC in a multicenter randomized controlled trial. Methods ENDOANGEL was developed using deep convolutional neural networks and deep reinforcement learning. Patients undergoing EGD in five hospitals were randomly assigned to the ENDOANGEL-assisted group or to a control group without use of ENDOANGEL. The primary outcome was the number of blind spots. Secondary outcomes included performance of ENDOANGEL in predicting EGC in a clinical setting. Results 1050 patients were randomized, and 498 and 504 patients in the ENDOANGEL and control groups, respectively, were analyzed. Compared with the control group, the ENDOANGEL group had fewer blind spots (mean 5.38 [standard deviation (SD) 4.32] vs. 9.82 [SD 4.98]; P < 0.001) and longer inspection time (5.40 [SD 3.82] vs. 4.38 [SD 3.91] minutes; P < 0.001). In the ENDOANGEL group, 196 gastric lesions with pathological results were identified. ENDOANGEL correctly predicted all three EGCs (one mucosal carcinoma and two high grade neoplasias) and two advanced gastric cancers, with a per-lesion accuracy of 84.7 %, sensitivity of 100 %, and specificity of 84.3 % for detecting gastric cancer. Conclusions In this multicenter study, ENDOANGEL was an effective and robust system to improve the quality of EGD and has the potential to detect EGC in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小鱼发布了新的文献求助20
1秒前
1秒前
怕孤独的问芙完成签到,获得积分10
3秒前
4秒前
4秒前
CangZm1发布了新的文献求助150
4秒前
Adzuki0812完成签到,获得积分10
4秒前
烟花应助SMART采纳,获得10
4秒前
4秒前
HYY关闭了HYY文献求助
5秒前
桐桐应助宓广缘采纳,获得10
5秒前
xuxuxuxuxu发布了新的文献求助10
5秒前
caopeili完成签到 ,获得积分10
5秒前
6秒前
史万仇完成签到,获得积分10
6秒前
Leiting发布了新的文献求助20
7秒前
7秒前
8秒前
lxl完成签到,获得积分10
8秒前
8秒前
8秒前
史万仇发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助30
9秒前
9秒前
草哥发布了新的文献求助10
9秒前
超帅的元柏完成签到,获得积分10
9秒前
10秒前
特立独行的土豆完成签到,获得积分10
10秒前
10秒前
11秒前
soren发布了新的文献求助10
11秒前
猪猪hero应助Ckg采纳,获得10
11秒前
五更夜发布了新的文献求助10
12秒前
12秒前
12秒前
DijiaXu应助丁论文采纳,获得10
12秒前
13秒前
13秒前
13秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Scales of Justice: Reimagining Political Space in a Globalizing World 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4225337
求助须知:如何正确求助?哪些是违规求助? 3758619
关于积分的说明 11814645
捐赠科研通 3420049
什么是DOI,文献DOI怎么找? 1877047
邀请新用户注册赠送积分活动 930459
科研通“疑难数据库(出版商)”最低求助积分说明 838618