Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer: a randomized controlled trial

医学 食管胃十二指肠镜检查 随机对照试验 内窥镜检查 癌症 结肠镜检查 内科学 胃肠病学 外科 结直肠癌
作者
Lianlian Wu,Xinqi He,Mei Liu,Huaping Xie,Ping An,Jun Zhang,Heng Zhang,Yaowei Ai,Qiao-Yun Tong,Mingwen Guo,Manling Huang,Cun-Jin Ge,Zhi Yang,Jingping Yuan,Jun Liu,Wei Zhou,Xiaoda Jiang,Xu Huang,Ganggang Mu,Xinyue Wan,Yanxia Li,Hongguang Wang,Yonggui Wang,Hongfeng Zhang,Di Chen,Dexin Gong,Jing Wang,Li Huang,Jia Li,Liwen Yao,Yijie Zhu,Honggang Yu
出处
期刊:Endoscopy [Thieme Medical Publishers (Germany)]
卷期号:53 (12): 1199-1207 被引量:104
标识
DOI:10.1055/a-1350-5583
摘要

Abstract Background Esophagogastroduodenoscopy (EGD) is a prerequisite for detecting upper gastrointestinal lesions especially early gastric cancer (EGC). An artificial intelligence system has been shown to monitor blind spots during EGD. In this study, we updated the system (ENDOANGEL), verified its effectiveness in improving endoscopy quality, and pretested its performance in detecting EGC in a multicenter randomized controlled trial. Methods ENDOANGEL was developed using deep convolutional neural networks and deep reinforcement learning. Patients undergoing EGD in five hospitals were randomly assigned to the ENDOANGEL-assisted group or to a control group without use of ENDOANGEL. The primary outcome was the number of blind spots. Secondary outcomes included performance of ENDOANGEL in predicting EGC in a clinical setting. Results 1050 patients were randomized, and 498 and 504 patients in the ENDOANGEL and control groups, respectively, were analyzed. Compared with the control group, the ENDOANGEL group had fewer blind spots (mean 5.38 [standard deviation (SD) 4.32] vs. 9.82 [SD 4.98]; P < 0.001) and longer inspection time (5.40 [SD 3.82] vs. 4.38 [SD 3.91] minutes; P < 0.001). In the ENDOANGEL group, 196 gastric lesions with pathological results were identified. ENDOANGEL correctly predicted all three EGCs (one mucosal carcinoma and two high grade neoplasias) and two advanced gastric cancers, with a per-lesion accuracy of 84.7 %, sensitivity of 100 %, and specificity of 84.3 % for detecting gastric cancer. Conclusions In this multicenter study, ENDOANGEL was an effective and robust system to improve the quality of EGD and has the potential to detect EGC in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大大的DY完成签到 ,获得积分10
3秒前
3秒前
满意的柏柳完成签到 ,获得积分10
4秒前
wlqydyxf发布了新的文献求助10
5秒前
皮凡发布了新的文献求助10
5秒前
小周完成签到 ,获得积分10
5秒前
洁净的天德完成签到,获得积分10
6秒前
户户得振发布了新的文献求助10
8秒前
wzxhhh完成签到,获得积分10
8秒前
ry发布了新的文献求助10
8秒前
顺心香露完成签到,获得积分20
10秒前
搜集达人应助Lazarus_x采纳,获得10
10秒前
汉堡包应助舒适的素采纳,获得10
12秒前
甜甜千亦完成签到,获得积分20
14秒前
Kiwi完成签到 ,获得积分10
16秒前
整齐的忆彤完成签到,获得积分10
17秒前
19秒前
19秒前
传奇3应助CATH采纳,获得10
20秒前
顺心香露发布了新的文献求助10
21秒前
23秒前
Shaangueuropa完成签到,获得积分10
24秒前
24秒前
HaHa007完成签到,获得积分10
25秒前
应应发布了新的文献求助10
27秒前
29秒前
wlqydyxf完成签到,获得积分20
29秒前
wangli发布了新的文献求助10
29秒前
30秒前
30秒前
唐唐发布了新的文献求助10
32秒前
32秒前
个性跳跳糖完成签到,获得积分10
33秒前
如意的泥猴桃完成签到 ,获得积分10
33秒前
34秒前
CATH发布了新的文献求助10
35秒前
ghost202完成签到,获得积分10
35秒前
wbgwudi完成签到,获得积分10
37秒前
诚心代芙完成签到 ,获得积分10
39秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783222
求助须知:如何正确求助?哪些是违规求助? 3328565
关于积分的说明 10236984
捐赠科研通 3043669
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799792
科研通“疑难数据库(出版商)”最低求助积分说明 759126