A review of wind speed and wind power forecasting with deep neural networks

风电预测 风力发电 可再生能源 计算机科学 深度学习 风速 人工智能 人工神经网络 机器学习 电力系统 理论(学习稳定性) 工业工程 功率(物理) 气象学 工程类 电气工程 量子力学 物理
作者
Yun Wang,Runmin Zou,Fang Liu,Lingjun Zhang,Qianyi Liu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:304: 117766-117766 被引量:579
标识
DOI:10.1016/j.apenergy.2021.117766
摘要

The use of wind power, a pollution-free and renewable form of energy, to generate electricity has attracted increasing attention. However, intermittent electricity generation resulting from the random nature of wind speed poses challenges to the safety and stability of electric power grids when wind power is integrated into grids on large scales. Therefore, accurate forecasting of wind speed and wind power (WS/WP) has gradually taken on a key role in reducing wind power fluctuations in system dispatch planning. With the development of artificial intelligence technologies, especially deep learning, increasing numbers of deep learning-based models are being considered for WS/WP forecasting due to their superior ability to deal with complex nonlinear problems. This paper comprehensively reviews the various deep learning technologies being used in WS/WP forecasting, including the stages of data processing, feature extraction, and relationship learning. The forecasting performance of some popular models is tested and compared using two real-world wind datasets. In this review, three challenges to accurate WS/WP forecasting under complex conditions are identified, namely, data uncertainties, incomplete features, and intricate nonlinear relationships. Moreover, future research directions are summarized as a guide to improve the accuracy of WS/WP forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YIN关注了科研通微信公众号
刚刚
丹Healer发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
小谢完成签到,获得积分20
6秒前
yar应助jiwoong采纳,获得10
6秒前
yar应助jiwoong采纳,获得10
6秒前
yar应助jiwoong采纳,获得10
6秒前
阳光的一应助wish采纳,获得10
7秒前
7秒前
7秒前
YAMO一发布了新的文献求助10
8秒前
9秒前
11秒前
weixiaosi完成签到 ,获得积分10
11秒前
12秒前
Lisianthus发布了新的文献求助10
12秒前
可爱的函函应助南至采纳,获得10
12秒前
华仔应助YAMO一采纳,获得10
13秒前
香蕉觅云应助gray2025采纳,获得10
14秒前
15秒前
钫人发布了新的文献求助10
16秒前
传奇3应助BingHe采纳,获得10
17秒前
18秒前
可爱的函函应助丹Healer采纳,获得10
18秒前
李健应助Lawrence采纳,获得10
19秒前
20秒前
20秒前
21秒前
22秒前
dou发布了新的文献求助200
26秒前
文静发布了新的文献求助10
26秒前
111发布了新的文献求助10
27秒前
Sid应助li33333采纳,获得10
27秒前
充电宝应助顺心雅柏采纳,获得10
28秒前
科研抖擞发布了新的文献求助10
28秒前
钫人完成签到,获得积分10
31秒前
无花果应助长岁采纳,获得10
33秒前
33秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897309
求助须知:如何正确求助?哪些是违规求助? 3441279
关于积分的说明 10820597
捐赠科研通 3166212
什么是DOI,文献DOI怎么找? 1749206
邀请新用户注册赠送积分活动 845209
科研通“疑难数据库(出版商)”最低求助积分说明 788492