亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nomogram Predicting Cancer-Specific Death in Parotid Carcinoma: a Competing Risk Analysis

单变量 列线图 多元统计 医学 内科学 肿瘤科 比例危险模型 回归分析 累积发病率 流行病学 阶段(地层学) 接收机工作特性 多元分析 危险系数 逻辑回归 统计 癌症 生存分析 队列 回顾性队列研究 置信区间 单变量分析 预测模型 风险评估 优势比 数学
作者
Xiancai Li,Mingbin Hu,Weiguo Gu,Dewu Liu,Jinhong Mei,Shaoqing Chen
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:11 被引量:3
标识
DOI:10.3389/fonc.2021.698870
摘要

Multiple factors have been shown to be tied to the prognosis of individuals with parotid cancer (PC); however, there are limited numbers of reliable as well as straightforward tools available for clinical estimation of individualized mortality. Here, a competing risk nomogram was established to assess the risk of cancer-specific deaths (CSD) in individuals with PC.Data of PC patients analyzed in this work were retrieved from the Surveillance, Epidemiology, and End Results (SEER) data repository and the First Affiliated Hospital of Nanchang University (China). Univariate Lasso regression coupled with multivariate Cox assessments were adopted to explore the predictive factors influencing CSD. The cumulative incidence function (CIF) coupled with the Fine-Gray proportional hazards model was employed to determine the risk indicators tied to CSD as per the univariate, as well as multivariate analyses conducted in the R software. Finally, we created and validated a nomogram to forecast the 3- and 5-year CSD likelihood.Overall, 1,467 PC patients were identified from the SEER data repository, with the 3- and 5-year CSD CIF after diagnosis being 21.4% and 24.1%, respectively. The univariate along with the Lasso regression data revealed that nine independent risk factors were tied to CSD in the test dataset (n = 1,035) retrieved from the SEER data repository. Additionally, multivariate data of Fine-Gray proportional subdistribution hazards model illustrated that N stage, Age, T stage, Histologic, M stage, grade, surgery, and radiation were independent risk factors influencing CSD in an individual with PC in the test dataset (p < 0.05). Based on optimization performed using the Bayesian information criterion (BIC), six variables were incorporated in the prognostic nomogram. In the internal SEER data repository verification dataset (n = 432) and the external medical center verification dataset (n = 473), our nomogram was well calibrated and exhibited considerable estimation efficiency.The competing risk nomogram presented here can be used for assessing cancer-specific mortality in PC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
花花123发布了新的文献求助10
30秒前
35秒前
bobo0212发布了新的文献求助30
36秒前
凉快完成签到,获得积分20
36秒前
yyds完成签到,获得积分10
39秒前
rerorero18发布了新的文献求助10
42秒前
英俊的铭应助花花123采纳,获得10
42秒前
1分钟前
Omni发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得30
1分钟前
KiraShaw应助科研通管家采纳,获得10
1分钟前
绵绵球应助xllllll采纳,获得20
1分钟前
晚星完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
可爱的函函应助bobo0212采纳,获得30
2分钟前
非洲大象发布了新的文献求助50
2分钟前
非洲大象完成签到,获得积分10
2分钟前
Tree_QD完成签到 ,获得积分10
2分钟前
Noob_saibot完成签到,获得积分10
2分钟前
阿俊完成签到 ,获得积分10
2分钟前
iman完成签到,获得积分10
2分钟前
休斯顿完成签到,获得积分10
2分钟前
3分钟前
cokevvv发布了新的文献求助10
3分钟前
cokevvv完成签到,获得积分10
3分钟前
休斯顿发布了新的文献求助10
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
科研通AI6应助cokevvv采纳,获得10
3分钟前
yibo完成签到,获得积分10
3分钟前
lixuebin完成签到 ,获得积分10
3分钟前
yibo发布了新的文献求助10
3分钟前
Jasper应助xixihaha采纳,获得10
3分钟前
flyinthesky完成签到,获得积分10
3分钟前
Mipe完成签到,获得积分10
3分钟前
3分钟前
3分钟前
HC完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4753336
求助须知:如何正确求助?哪些是违规求助? 4097788
关于积分的说明 12678558
捐赠科研通 3810895
什么是DOI,文献DOI怎么找? 2103999
邀请新用户注册赠送积分活动 1129189
关于科研通互助平台的介绍 1006373