代表(政治)
计算机科学
粒状材料
图形
粒子(生态学)
理论计算机科学
生物系统
工程类
地质学
岩土工程
海洋学
政治学
政治
生物
法学
作者
Neea Tuomainen,David Blanco–Mulero,Ville Kyrki
出处
期刊:IEEE robotics and automation letters
日期:2022-03-10
卷期号:7 (2): 5663-5670
被引量:20
标识
DOI:10.1109/lra.2022.3158382
摘要
Manipulation of granular materials such as sand or rice remains an unsolved\nproblem due to challenges such as the difficulty of defining their\nconfiguration or modeling the materials and their particles interactions.\nCurrent approaches tend to simplify the material dynamics and omit the\ninteractions between the particles. In this paper, we propose to use a\ngraph-based representation to model the interaction dynamics of the material\nand rigid bodies manipulating it. This allows the planning of manipulation\ntrajectories to reach a desired configuration of the material. We use a graph\nneural network (GNN) to model the particle interactions via message-passing. To\nplan manipulation trajectories, we propose to minimise the Wasserstein distance\nbetween a predicted distribution of granular particles and their desired\nconfiguration. We demonstrate that the proposed method is able to pour granular\nmaterials into the desired configuration both in simulated and real scenarios.\n
科研通智能强力驱动
Strongly Powered by AbleSci AI