Machine-Learning Model for Mortality Prediction in Patients with Community-Acquired Pneumonia: Development and Validation Study

社区获得性肺炎 肺炎 内科学 人工智能 医学 重症监护医学 计算机科学 机器学习
作者
Catia Cillóniz,Logan Ward,Mads Lause Mogensen,Juan M. Pericàs,Raúl Méndez,Albert Gabarrús,Carolina García‐Vidal,Rosario Menéndez,Antoní Torres
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.3880457
摘要

Background: Pneumonia is the leading infectious cause of mortality globally. Artificial intelligence tools and techniques such as machine learning (ML) are increasingly seen as a suitable manner to increase the prediction capacity of currently available tools in infectious diseases. However, studies evaluating the efficacy of ML methods in enhancing the predictive capacity of existing scores for community-acquired pneumonia (CAP) are limited. We aimed to apply a causal probabilistic network (CPN) model (SepsisFinder) to predict 30-day mortality in patients with CAP. As secondary objective, we pursued validating the ML model using a large cohort of CAP patients.Methods: This was a derivation-validation retrospective study to test the CPN model in its prediction of 30-day mortality in patients hospitalised with CAP. The derivation cohort comprised all consecutive adults with CAP admitted between 2003 and 2016 to a university hospital in Barcelona, Spain. For the validation cohort, we included all consecutive patients with CAP admitted to a university hospital in Valencia, Spain between 2012 and 2018.Findings: The derivation cohort comprised 4,531 patients whilst the validation cohort had 1,034 patients. In the derivation cohort, the AUC of SepsisFinder, CURB-65, SOFA, PSI and qSOFA were 0.801, 0.759, 0.671, 0.799 and 0.642, respectively, for 30-day mortality prediction. In the validation study, the AUC of SepsisFinder was 0.826, concordantly with the AUC (0.801) in the derivation data (p=0.51). The AUC of SepisFinder was significantly higher than those of CURB-65 (0.764, p=0.03) and qSOFA (0.729, p=0.005). However, it did not differ significantly from PSI (0.830, p=0.92) and SOFA (0.771, p=0.14).Interpretation: Sepsisfinder shows potential for improving mortality prediction amongst patients with CAP using structured health data. Additional external validation studies should be conducted to support generalisability.Funding: CIBER de Enfermedades Respiratorias (CIBERES CB06/06/0028), and by 2009 Support to Research Groups of Catalonia 911, IDIBAPS.Declaration of Interest: Dr Cillóniz is the recipient of the SEPAR fellowship 2018, and a grant from the Fondo de Investigación Sanitaria (PI19/00207). LW is employed on a consulting basis and is a shareholder of Treat Systems ApS. MM is CEO and a shareholder of Treat Systems ApS. Treat Systems ApS is a manufacturer of medical device software for decision support in the field of infectious diseases and clinical microbiology, including TREAT-Lab. All other authors have nothing to declare. Ethical Approval: Institutional approval was provided by the Ethics Committee of the University Hospital La Fe of Valencia (XXXXXXX) and the Comité Ètic d’Investigació Clínica of the Hospital Clínic of Barcelona (2011/0219), which waived the need for informed consent. All data set were anonymously analyzed, and the study was performed following current recommendation of the Declaration of Helsinki.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真元冬发布了新的文献求助10
2秒前
赛因斯完成签到,获得积分10
3秒前
王桐发布了新的文献求助10
4秒前
林伟俊Lim发布了新的文献求助10
4秒前
5秒前
王晓蕾完成签到,获得积分10
5秒前
6秒前
mmmmm完成签到,获得积分10
7秒前
Orange应助刘德新采纳,获得10
7秒前
Unlung发布了新的文献求助10
8秒前
脑洞疼应助hanatae采纳,获得10
8秒前
8秒前
丑儿完成签到,获得积分10
9秒前
李桑完成签到,获得积分10
9秒前
9秒前
YF发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
Grammar in Action:Building comprehensive grammars of talk-in-interaction 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4164498
求助须知:如何正确求助?哪些是违规求助? 3699946
关于积分的说明 11682048
捐赠科研通 3389452
什么是DOI,文献DOI怎么找? 1858816
邀请新用户注册赠送积分活动 919280
科研通“疑难数据库(出版商)”最低求助积分说明 831988