Hybrid deep learning model for risk prediction of fracture in patients with diabetes and osteoporosis

医学 骨质疏松症 糖尿病 更年期 病史 内科学 物理疗法 重症监护医学 骨矿物 内分泌学
作者
Yaxin Chen,Tianyi Yang,Xiaofeng Gao,Ajing Xu
出处
期刊:Frontiers of Medicine [Higher Education Press]
卷期号:16 (3): 496-506 被引量:10
标识
DOI:10.1007/s11684-021-0828-7
摘要

The fracture risk of patients with diabetes is higher than those of patients without diabetes due to hyperglycemia, usage of diabetes drugs, changes in insulin levels, and excretion, and this risk begins as early as adolescence. Many factors including demographic data (such as age, height, weight, and gender), medical history (such as smoking, drinking, and menopause), and examination (such as bone mineral density, blood routine, and urine routine) may be related to bone metabolism in patients with diabetes. However, most of the existing methods are qualitative assessments and do not consider the interactions of the physiological factors of humans. In addition, the fracture risk of patients with diabetes and osteoporosis has not been further studied previously. In this paper, a hybrid model combining XGBoost with deep neural network is used to predict the fracture risk of patients with diabetes and osteoporosis, and investigate the effect of patients’ physiological factors on fracture risk. A total of 147 raw input features are considered in our model. The presented model is compared with several benchmarks based on various metrics to prove its effectiveness. Moreover, the top 18 influencing factors of fracture risks of patients with diabetes are determined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
半生瓜完成签到,获得积分10
2秒前
似宁发布了新的文献求助10
2秒前
ding应助折纸为鹤采纳,获得10
3秒前
694255360发布了新的文献求助10
3秒前
tanchihao完成签到,获得积分10
4秒前
w233完成签到,获得积分10
4秒前
5秒前
半生瓜发布了新的文献求助10
5秒前
6秒前
hanabi完成签到,获得积分10
6秒前
6秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
8秒前
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
冰魂应助科研通管家采纳,获得10
8秒前
良辰应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
良辰应助科研通管家采纳,获得10
8秒前
隐形曼青应助楠楠2001采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
岸芷汀兰完成签到,获得积分10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
9秒前
9秒前
852应助科研通管家采纳,获得10
9秒前
Michelle发布了新的文献求助10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
瓜子完成签到,获得积分10
10秒前
xw完成签到,获得积分10
10秒前
11秒前
11秒前
zyl发布了新的文献求助10
12秒前
12秒前
雨蝶完成签到,获得积分10
13秒前
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838822
求助须知:如何正确求助?哪些是违规求助? 3381252
关于积分的说明 10517468
捐赠科研通 3100694
什么是DOI,文献DOI怎么找? 1707708
邀请新用户注册赠送积分活动 821857
科研通“疑难数据库(出版商)”最低求助积分说明 773033