数学
指数稳定性
二次方程
应用数学
指数函数
基质(化学分析)
线性矩阵不等式
马尔可夫链
人工神经网络
控制理论(社会学)
数学优化
计算机科学
数学分析
非线性系统
统计
几何学
控制(管理)
材料科学
复合材料
人工智能
物理
机器学习
量子力学
作者
Xiaoman Liu,Haiyang Zhang,Lianglin Xiong,Tao Wu
标识
DOI:10.1109/ccdc52312.2021.9601483
摘要
This paper investigates the exponential state estimation problem for a class of neural networks with Time-varying Delay (TVD) and Markov Jump Parameters (MJPs). Firstly, to derive a tighter bound of Exponential-type Integral Quadratic Terms (EIQTs), a new Free-matrix Exponential-type Inequality (FMEI) is provided, which includes some existing ones as its special cases. Secondly, by fully considering the information of attenuation exponent, TVD and MJPs, a novel Lyapunov- Krasovskii Functional (LKF) is constructed. Then, by employing the new FMEI and other analytical techniques, a less conservative criterion guaranteeing the stochastic stability of error system is obtained in form of Linear Matrix Inequalities (LMIs). In the end, a numerical example is given to show the effectiveness of the obtained result.
科研通智能强力驱动
Strongly Powered by AbleSci AI