Early warning systems and rapid response systems for the prevention of patient deterioration on acute adult hospital wards

医学 急诊医学 快速反应小组 预警系统 重症监护医学 预警得分 医疗急救
作者
Jennifer McGaughey,Dean Fergusson,Peter Van Bogaert,Louise Rose
出处
期刊:The Cochrane library [Elsevier]
卷期号:2021 (11)
标识
DOI:10.1002/14651858.cd005529.pub3
摘要

Background Early warning systems (EWS) and rapid response systems (RRS) have been implemented internationally in acute hospitals to facilitate early recognition, referral and response to patient deterioration as a solution to address suboptimal ward-based care. EWS and RRS facilitate healthcare decision-making using checklists and provide structure to organisational practices through governance and clinical audit. However, it is unclear whether these systems improve patient outcomes. This is the first update of a previously published (2007) Cochrane Review. Objectives To determine the effect of EWS and RRS implementation on adults who deteriorate on acute hospital wards compared to people receiving hospital care without EWS and RRS in place. Search methods We searched CENTRAL, MEDLINE, Embase and two trial registers on 28 March 2019. We subsequently ran a MEDLINE update on 15 May 2020 that identified no further studies. We checked references of included studies, conducted citation searching, and contacted experts and critical care organisations. Selection criteria We included randomised trials, non-randomised studies, controlled before-after (CBA) studies, and interrupted time series (ITS) designs measuring our outcomes of interest following implementation of EWS and RRS in acute hospital wards compared to ward settings without EWS and RRS. Data collection and analysis Two review authors independently checked studies for inclusion, extracted data and assessed methodological quality using standard Cochrane and Effective Practice and Organisation of Care (EPOC) Group methods. Where possible, we standardised data to rates per 1000 admissions; and calculated risk differences and 95% confidence intervals (CI) using the Newcombe and Altman method. We reanalysed three CBA studies as ITS designs using segmented regression analysis with Newey-West autocorrelation adjusted standard errors with lag of order 1. We assessed the certainty of evidence using the GRADE approach. Main results We included four randomised trials (455,226 participants) and seven non-randomised studies (210,905 participants reported in three studies). All 11 studies implemented an intervention comprising an EWS and RRS conducted in high- or middle-income countries. Participants were admitted to 282 acute hospitals. We were unable to perform meta-analyses due to clinical and methodological heterogeneity across studies. Randomised trials were assessed as high risk of bias due to lack of blinding participants and personnel across all studies. Risk of bias for non-randomised studies was critical (three studies) due to high risk of confounding and unclear risk of bias due to no reporting of deviation from protocol or serious (four studies) but not critical due to use of statistical methods to control for some but not all baseline confounders. Where possible we presented original study data which reported the adjusted relative effect given these were appropriately adjusted for design and participant characteristics. We compared outcomes of randomised and non-randomised studies reported them separately to determine which studies contributed to the overall certainty of evidence. We reported findings from key comparisons. Hospital mortality Randomised trials provided low-certainty evidence that an EWS and RRS intervention may result in little or no difference in hospital mortality (4 studies, 455,226 participants; results not pooled). The evidence on hospital mortality from three non-randomised studies was of very low certainty (210,905 participants). Composite outcome (unexpected cardiac arrests, unplanned ICU admissions and death) One randomised study showed that an EWS and RRS intervention probably results in no difference in this composite outcome (adjusted odds ratio (aOR) 0.98, 95% CI 0.83 to 1.16; 364,094 participants; moderate-certainty evidence). One non-randomised study suggests that implementation of an EWS and RRS intervention may slightly reduce this composite outcome (aOR 0.85, 95% CI 0.72 to 0.99; 57,858 participants; low-certainty evidence). Unplanned ICU admissions Randomised trials provided low-certainty evidence that an EWS and RRS intervention may result in little or no difference in unplanned ICU admissions (3 studies, 452,434 participants; results not pooled). The evidence from one non-randomised study is of very low certainty (aOR 0.88, 95% CI 0.75 to 1.02; 57,858 participants). ICU readmissions No studies reported this outcome. Length of hospital stay Randomised trials provided low-certainty evidence that an EWS and RRS intervention may have little or no effect on hospital length of stay (2 studies, 21,417 participants; results not pooled). Adverse events (unexpected cardiac or respiratory arrest) Randomised trials provided low-certainty evidence that an EWS and RRS intervention may result in little or no difference in adverse events (3 studies, 452,434 participants; results not pooled). The evidence on adverse events from three non-randomised studies (210,905 participants) is very uncertain. Authors' conclusions Given the low-to-very low certainty evidence for all outcomes from non-randomised studies, we have drawn our conclusions from the randomised evidence. This evidence provides low-certainty evidence that EWS and RRS may lead to little or no difference in hospital mortality, unplanned ICU admissions, length of hospital stay or adverse events; and moderate-certainty evidence of little to no difference on composite outcome. The evidence from this review update highlights the diversity in outcome selection and poor methodological quality of most studies investigating EWS and RRS. As a result, no strong recommendations can be made regarding the effectiveness of EWS and RRS based on the evidence currently available. There is a need for development of a patient-informed core outcome set comprising clear and consistent definitions and recommendations for measurement as well as EWS and RRS interventions conforming to a standard to facilitate meaningful comparison and future meta-analyses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
persona关注了科研通微信公众号
2秒前
6秒前
打牙祭发布了新的文献求助10
7秒前
15秒前
19秒前
我不学化学完成签到,获得积分10
20秒前
小兰花发布了新的文献求助10
21秒前
22秒前
tafffya完成签到 ,获得积分10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
大个应助科研通管家采纳,获得10
23秒前
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
sky123应助科研通管家采纳,获得20
23秒前
FIN应助科研通管家采纳,获得30
23秒前
FIN应助科研通管家采纳,获得30
23秒前
FIN应助科研通管家采纳,获得30
23秒前
24秒前
今后应助打牙祭采纳,获得10
24秒前
跳跃寄松发布了新的文献求助30
24秒前
嘉博学长发布了新的文献求助10
25秒前
26秒前
26秒前
27秒前
xichang完成签到 ,获得积分10
28秒前
SCT发布了新的文献求助10
29秒前
可爱的函函应助落后怀曼采纳,获得10
31秒前
matteo应助加菲丰丰采纳,获得50
31秒前
发发发完成签到,获得积分10
34秒前
huxiao发布了新的文献求助10
36秒前
TomYU发布了新的文献求助10
41秒前
43秒前
zsirfighting完成签到,获得积分10
45秒前
47秒前
whims完成签到,获得积分10
49秒前
zsirfighting发布了新的文献求助30
49秒前
54秒前
东方欲晓完成签到,获得积分10
55秒前
五五哥完成签到,获得积分10
56秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2476834
求助须知:如何正确求助?哪些是违规求助? 2140734
关于积分的说明 5456338
捐赠科研通 1864113
什么是DOI,文献DOI怎么找? 926663
版权声明 562846
科研通“疑难数据库(出版商)”最低求助积分说明 495819