Radiomic Features at CT Can Distinguish Pancreatic Cancer from Noncancerous Pancreas

医学 四分位间距 胰腺癌 胰腺导管腺癌 胰腺 回顾性队列研究 放射科 癌症 内科学 核医学 肿瘤科
作者
Po‐Ting Chen,Dehua Chang,Hui-Hsuan Yen,Kao–Lang Liu,Suyun Huang,H Roth,Ming‐Shiang Wu,Wei‐Chih Liao,Weichung Wang
出处
期刊:Radiology 卷期号:3 (4): e210010-e210010 被引量:26
标识
DOI:10.1148/rycan.2021210010
摘要

Purpose To identify distinguishing CT radiomic features of pancreatic ductal adenocarcinoma (PDAC) and to investigate whether radiomic analysis with machine learning can distinguish between patients who have PDAC and those who do not. Materials and Methods This retrospective study included contrast material-enhanced CT images in 436 patients with PDAC and 479 healthy controls from 2012 to 2018 from Taiwan that were randomly divided for training and testing. Another 100 patients with PDAC (enriched for small PDACs) and 100 controls from Taiwan were identified for testing (from 2004 to 2011). An additional 182 patients with PDAC and 82 healthy controls from the United States were randomly divided for training and testing. Images were processed into patches. An XGBoost (https://xgboost.ai/) model was trained to classify patches as cancerous or noncancerous. Patients were classified as either having or not having PDAC on the basis of the proportion of patches classified as cancerous. For both patch-based and patient-based classification, the models were characterized as either a local model (trained on Taiwanese data only) or a generalized model (trained on both Taiwanese and U.S. data). Sensitivity, specificity, and accuracy were calculated for patch- and patient-based analysis for the models. Results The median tumor size was 2.8 cm (interquartile range, 2.0-4.0 cm) in the 536 Taiwanese patients with PDAC (mean age, 65 years ± 12 [standard deviation]; 289 men). Compared with normal pancreas, PDACs had lower values for radiomic features reflecting intensity and higher values for radiomic features reflecting heterogeneity. The performance metrics for the developed generalized model when tested on the Taiwanese and U.S. test data sets, respectively, were as follows: sensitivity, 94.7% (177 of 187) and 80.6% (29 of 36); specificity, 95.4% (187 of 196) and 100% (16 of 16); accuracy, 95.0% (364 of 383) and 86.5% (45 of 52); and area under the curve, 0.98 and 0.91. Conclusion Radiomic analysis with machine learning enabled accurate detection of PDAC at CT and could identify patients with PDAC. Keywords: CT, Computer Aided Diagnosis (CAD), Pancreas, Computer Applications-Detection/Diagnosis Supplemental material is available for this article. © RSNA, 2021.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俺的步行街完成签到,获得积分20
刚刚
小叮当完成签到,获得积分10
刚刚
刚刚
万能图书馆应助yyy采纳,获得10
1秒前
天天快乐应助墨尔根戴青采纳,获得10
1秒前
2秒前
2秒前
3秒前
小徐发布了新的文献求助10
3秒前
瓷穹发布了新的文献求助10
4秒前
6秒前
liujingyi发布了新的文献求助10
7秒前
cdercder应助sue采纳,获得10
8秒前
李咕咕完成签到,获得积分10
8秒前
9秒前
9秒前
11秒前
liujingyi完成签到,获得积分20
13秒前
13秒前
风花雪月完成签到 ,获得积分10
14秒前
15秒前
华仔应助summer1z采纳,获得10
15秒前
16秒前
苗月月完成签到 ,获得积分20
16秒前
17秒前
盼盼完成签到 ,获得积分10
18秒前
健忘英姑应助隐形元龙采纳,获得20
19秒前
20秒前
完美世界应助瓷穹采纳,获得10
21秒前
22秒前
她与论文皆失完成签到,获得积分10
23秒前
汉堡包应助科研通管家采纳,获得10
24秒前
深情安青应助科研通管家采纳,获得10
24秒前
酷波er应助科研通管家采纳,获得10
24秒前
wanci应助负责冰海采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
24秒前
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
bc应助科研通管家采纳,获得30
24秒前
今后应助科研通管家采纳,获得10
25秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Pteromalidae 600
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842830
求助须知:如何正确求助?哪些是违规求助? 3384827
关于积分的说明 10537714
捐赠科研通 3105396
什么是DOI,文献DOI怎么找? 1710290
邀请新用户注册赠送积分活动 823577
科研通“疑难数据库(出版商)”最低求助积分说明 774149