方位(导航)
断层(地质)
计算机科学
人工智能
机器学习
地震学
地质学
作者
Xiao Zhang,Boyang Zhao,Yun Lin
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2021-01-01
卷期号:9: 155598-155608
被引量:97
标识
DOI:10.1109/access.2021.3128669
摘要
The most important parts of rotating machinery are the rolling bearings. Finding bearing faults in time can avoid affecting the operation of the entire equipment. The data-driven fault diagnosis technology of bearings has recently become a research hotspot, and the starting point of research is often the acquisition of vibration signals. There are many public data sets for rolling bearings. Among them, the most widely used public dataset is Case Western Reserve University bearing center (CWRU). This paper will start from the CWRU data set, compare and analyze some basic methods of machine learning based rolling bearing fault diagnosis, and summarize the characteristics of CWRU. First, we give a comprehensive introduction to CWRU and summarize the results achieved. After that, the basic methods and principles of machine learning based rolling bearing fault diagnosis were summarized. Finally, we conduct experiments and analyze experimental results. This paper will have certain guiding significance for the future use of CWRU for machine learning based rolling bearing fault diagnosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI