已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A fuzzy data augmentation technique to improve regularisation

过度拟合 计算机科学 人工智能 数据挖掘 模糊逻辑 机器学习 神经模糊 聚类分析 差异(会计) 模糊分类 人工神经网络 模式识别(心理学) 模糊控制系统 会计 业务
作者
Rukshima Dabare,Kok Wai Wong,Mohd Fairuz Shiratuddin,Polychronis Koutsakis
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (8): 4561-4585 被引量:5
标识
DOI:10.1002/int.22731
摘要

Deep learning (DL) has achieved superior classification in many applications due to its capability of extracting features from the data. However, the success of DL comes with the tradeoff of possible overfitting. The bias towards the data it has seen during the training process leads to poor generalisation. One way of solving this issue is by having enough training data so that the classifier is invariant to many data patterns. In the literature, data augmentation has been used as a type of regularisation method to reduce the chance for the model to overfit. However, most of the relevant works focus on image, sound or text data. There is not much work on numerical data augmentation, although many real-world problems deal with numerical data. In this paper, we propose using a technique based on Fuzzy C-Means clustering and fuzzy membership grades. Fuzzy-related techniques are used to address the variance problem by generating new data items based on fuzzy numbers and each data item's belongings to different fuzzy clusters. This data augmentation technique is used to improve the generalisation of a Deep Neural Network that is suitable for numerical data. By combining the proposed fuzzy data augmentation technique with the Dropout regularisation technique, we manage to balance the classification model's bias-variance tradeoff. Our proposed technique is evaluated using four popular data sets and is shown to provide better regularisation and higher classification accuracy compared with popular regularisation approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuli21315完成签到 ,获得积分10
1秒前
miemie完成签到,获得积分10
3秒前
王婧萱萱萱完成签到 ,获得积分10
4秒前
10秒前
Akim应助无奈的小松鼠采纳,获得10
10秒前
11秒前
11秒前
思源应助无奈的小松鼠采纳,获得10
11秒前
充电宝应助无奈的小松鼠采纳,获得10
11秒前
思源应助无奈的小松鼠采纳,获得10
11秒前
11秒前
orixero应助无奈的小松鼠采纳,获得10
11秒前
CipherSage应助无奈的小松鼠采纳,获得10
11秒前
华仔应助无奈的小松鼠采纳,获得10
11秒前
高贵的晓筠完成签到 ,获得积分10
11秒前
爆炸米花发布了新的文献求助10
12秒前
任性静祝完成签到 ,获得积分10
13秒前
15秒前
浮生若梦发布了新的文献求助10
17秒前
清爽念烟发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
20秒前
科研通AI5应助夕诙采纳,获得50
20秒前
24秒前
ganson完成签到 ,获得积分10
26秒前
充电宝应助小情绪采纳,获得10
26秒前
爆炸米花完成签到,获得积分10
26秒前
29秒前
nihao完成签到 ,获得积分10
30秒前
浮生若梦完成签到,获得积分10
31秒前
香蕉觅云应助开朗的尔风采纳,获得10
32秒前
无私的若雁应助dileibing采纳,获得20
33秒前
36秒前
111发布了新的文献求助10
36秒前
38秒前
岂曰无衣完成签到 ,获得积分10
40秒前
40秒前
43秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4091048
求助须知:如何正确求助?哪些是违规求助? 3629782
关于积分的说明 11507059
捐赠科研通 3341563
什么是DOI,文献DOI怎么找? 1836814
邀请新用户注册赠送积分活动 904731
科研通“疑难数据库(出版商)”最低求助积分说明 822512