数学优化
趋同(经济学)
最优化问题
凸优化
鞍点
计算机科学
凸函数
变量(数学)
下降(航空)
数学
模棱两可
功能(生物学)
随机优化
梯度下降
随机梯度下降算法
正多边形
人工智能
数学分析
航空航天工程
经济增长
工程类
经济
生物
程序设计语言
进化生物学
几何学
人工神经网络
作者
Ashish Cherukuri,Jorge Cortés
标识
DOI:10.1109/allerton.2017.8262716
摘要
This paper considers a general class of stochastic optimization problem for multiagent systems. We assume that the probability distribution of the uncertain parameters is unknown to the agents and instead, each agent gathers a certain number of samples of it. The objective for the agents is to cooperatively find, using the available data, a solution that has performance guarantees for the stochastic problem. To this end, we formulate a data-driven distributionally robust optimization (DRO) problem using Wasserstein ambiguity sets that has the desired performance guarantees. With the aim of solving this optimization in a distributed manner, we identify a convex-concave modified Lagrangian function whose saddle points are in correspondence with the optimizers of the DRO problem. We then design our distributed algorithm as the gradient descent in the convex variable and gradient ascent in the concave variable of this Lagrangian function. Our convergence analysis shows that the trajectories of this dynamics converge asymptotically to an optimizer of the DRO problem. Simulations illustrate our results.
科研通智能强力驱动
Strongly Powered by AbleSci AI