清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

[Study on Refined Oil Identification and Measurement Based on the Extension Neural Network Pattern Recognition].

人工神经网络 主成分分析 计算机科学 鉴定(生物学) 基质(化学分析) 过程(计算) 人工智能 汽油 数据挖掘 模式识别(心理学) 环境科学 工程类 材料科学 废物管理 复合材料 操作系统 生物 植物
作者
Liguo Zhang,Zhikun Chen,Li Wang,Li-fang Cao,Bing Yan,Yutian Wang
出处
期刊:PubMed 卷期号:36 (9): 2901-5
链接
标识
摘要

There are four major problems related to fuel consumption, “large consumption”, “low quality”, “lack of front-end clean” and “lack of end emission control”, which needs to address urgently for our country. More than 60 percent of the air pollution is due to the burning of coal and oil in our country, so the haze problem depends on how much we can deal with energy issues. We should achieve the identification and measurement of gasoline, diesel, kerosene and other refined oil products rapidly and accurately, which is important for the implementation of air pollution monitoring and controlling. in order to characterize the type information of the refined oil accurately and to improve the efficiency of the network model identification, it is effective to use principal component analysis method which could achieve the data dimension reductionwhile reducing the complexity of the problem. With principal component analysis of the most commonly used three-dimensional fluorescence spectra based on excitation-emission matrix (Excitation-Emission Matrix, EEM) data, we could obtain finer, deeper characteristic parameters. During the process of classification, it could avoid the “over-fitting” phenomenon because of the application of the cross-validation method, A neural network capable of both qualitative and quantitative analysis is designed. The neural network pattern recognition result becomes feedback to the input of the concentration network, together with the relative slope, the comprehensive background parameters, and the relative fluorescence intensity, we could achieve the measurement of the concentration of the corresponding types, then use the extension neural network pattern recognition technology to achieve identification and measurement of kerosene, diesel, gasoline and other refined oil products. The results of the study show that the average recognition rate reaches 0.99, the average recovery rate of concentration reaches 0.95, the average time of pattern recognition is 2.5 seconds and this time is 48.5% of the time used by PARAFAC model analysis method. The method significantly improves the operation speed with ideal application effect . It should be pointed out that, in order to ensure the accuracy and precision of the analysis, we should make corresponding calibration samples for specific analytes in terms of the analysis of complex mixtures such as refined oil, pesticides, tea, etc.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
8秒前
18秒前
追寻师完成签到 ,获得积分10
36秒前
激动的xx完成签到 ,获得积分10
48秒前
53秒前
1分钟前
昱昱完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
优秀念柏完成签到,获得积分10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
qq发布了新的文献求助10
1分钟前
1分钟前
2分钟前
qq完成签到,获得积分10
2分钟前
al完成签到 ,获得积分0
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
随心所欲完成签到 ,获得积分10
3分钟前
魏欣娜完成签到 ,获得积分10
4分钟前
李志全完成签到 ,获得积分10
4分钟前
ceeray23发布了新的文献求助20
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
共享精神应助科研通管家采纳,获得10
5分钟前
zyx应助魏欣娜采纳,获得10
5分钟前
好运常在完成签到 ,获得积分10
5分钟前
今后应助ceeray23采纳,获得20
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498477
求助须知:如何正确求助?哪些是违规求助? 4595686
关于积分的说明 14449610
捐赠科研通 4528603
什么是DOI,文献DOI怎么找? 2481562
邀请新用户注册赠送积分活动 1465691
关于科研通互助平台的介绍 1438472