Assessment of signature handwriting evidence via score-based likelihood ratio based on comparative measurement of relevant dynamic features

笔迹 计算机科学 模式识别(心理学) 核密度估计 追踪 人工智能 核(代数) 签名(拓扑) 统计 数学 几何学 操作系统 组合数学 估计员
作者
Xiaohong Chen,Christophe Champod,Xu Yang,Shaopei Shi,Yiwen Luo,Nan Wang,Yachen Wang,Qimeng Lu
出处
期刊:Forensic Science International [Elsevier BV]
卷期号:282: 101-110 被引量:25
标识
DOI:10.1016/j.forsciint.2017.11.022
摘要

This paper extends on previous research on the extraction and statistical analysis on relevant dynamic features (width, grayscale and radian combined with writing sequence information) in forensic handwriting examinations. In this paper, a larger signature database was gathered, including genuine signatures, freehand imitation signatures, random forgeries and tracing imitation signatures, which are often encountered in casework. After applying Principle Component Analysis (PCA) of the variables describing the proximity between specimens, a two-dimensional kernel density estimation was used to describe the variability of within-genuine comparisons and genuine–forgery comparisons. We show that the overlap between the within-genuine comparisons and the genuine–forgery comparisons depends on the imitated writer and on the forger as well. Then, in order to simulate casework conditions, cases were simulated by random sampling based on the collected signature dataset. Three-dimensional normal density estimation was used to estimate the numerator and denominator probability distribution used to compute a likelihood ratio (LR). The comparisons between the performance of the systems in SigComp2011 (based on static features) and the method presented in this paper (based on relevant dynamic features) showed that relevant dynamic features are better than static features in terms of accuracy, false acceptance rate, false rejection rate and calibration of likelihood ratios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向阳发布了新的文献求助10
刚刚
典雅的芷波完成签到,获得积分10
2秒前
安详念蕾完成签到,获得积分10
3秒前
林韦发布了新的文献求助10
4秒前
6秒前
wang完成签到,获得积分20
7秒前
丘比特应助典雅的芷波采纳,获得10
8秒前
科研通AI6应助lzn采纳,获得10
9秒前
wang发布了新的文献求助30
9秒前
starwan发布了新的文献求助10
11秒前
白米饭完成签到 ,获得积分10
12秒前
顾矜应助明理的蜗牛采纳,获得10
12秒前
吴彦祖完成签到,获得积分10
12秒前
15秒前
15秒前
Owen应助zzzyyt采纳,获得10
15秒前
石中酒完成签到 ,获得积分10
17秒前
英吉利25发布了新的文献求助10
18秒前
19秒前
wanghb616发布了新的文献求助10
22秒前
23秒前
琳666发布了新的文献求助20
23秒前
科目三应助迅速迎南采纳,获得10
24秒前
25秒前
xiao发布了新的文献求助10
29秒前
29秒前
追光者完成签到,获得积分10
31秒前
空2完成签到 ,获得积分0
33秒前
Ari_Kun完成签到 ,获得积分10
33秒前
陈曦完成签到,获得积分10
34秒前
Hello应助拜仁的罗伊斯采纳,获得10
35秒前
hserh完成签到,获得积分10
36秒前
36秒前
123完成签到,获得积分10
41秒前
Owen应助林韦采纳,获得10
41秒前
43秒前
丁芍药发布了新的文献求助10
43秒前
田様应助等一派好风采纳,获得10
44秒前
44秒前
思源应助调皮盼烟采纳,获得10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Representations of the Orient in Western Music: Violence and Sensuality 300
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4798417
求助须知:如何正确求助?哪些是违规求助? 4118079
关于积分的说明 12739637
捐赠科研通 3848493
什么是DOI,文献DOI怎么找? 2120559
邀请新用户注册赠送积分活动 1142656
关于科研通互助平台的介绍 1032260